AD-A259 102

U.S. Army Environmental Hygiene Agency

PHASE 2
TOXICOLOGICAL STUDY NO. 75-51-0743-88(2)
TRICHLOROMELAMINE
14-DAY RANGE FINDING AND 90-DAY
SUBCHRONIC STUDIES IN RATS
3 AUGUST 1988 - 17 JANUARY 1989

Approved for public release; distribution unlimited.

Approved for public release; distribution unlimited

Nationally Recognized as the Center of Matrixed Occupational and Environmental Health Excellence

DESTRUCTION NOTICE - Destroy by any method that will prevent disclosure of contents or reconstruction of the document.

Since 1942, USAEHA has provided worldwide preventive medicine support to the Army, Department of Defense and other Federal agencies. The USAEHA accomplishes this mission by providing information and consultative services to leaders and decision makers charged with the responsibility for the occupational and environmental health of military and civilian service members and associated communities worldwide. The USAEHA is unique nationally in its ability to matrix and tailor its staff, representing a wide array of scientific disciplines, for immediate response to occupational and environmental health crises and issues.

UNCLASSIFIED

						PAGE

1	REPORT D	OCUMENTATION	N PAGE			Form Approved OMB No. 0704-0188	
1a. REPORT SECURITY CLASSIFICATI	ON		16. RESTRICTIVE	MARKINGS			
2a. SECURITY CLASSIFICATION AUTI	HORITY		0.,2.0	r public re			
2b. DECLASSIFICATION / DOWNGRAD	DING SCHEDU	LE		on unlimited			
4. PERFORMING ORGANIZATION RE	PORT NÚMBE	R(S)	5. MONITORING	ÖRĞANİZATION R	EPORT NU	MBER(S)	
6a. NAME OF PERFORMING ORGAN U.S. ARMY ENVIORNMEN HYGIENE AGENCY	TAL	6b. OFFICE SYMBOL (If applicable) HSHB-MO-T	7a. NAME OF M	ONITORING ORGA	NIZATION		
6c. ADDRESS (City, State, and ZIP Co Aberdeen Proving Gro	ode) ound, MD	21010-5422	7b. ADDRESS (Cit	ty, State, and ZIP	Code)		
8a. NAME OF FUNDING/SPONSORIE ORGANIZATION	VG	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT ID	ENTIFICATI	ION NUMBER	
Natick Laboratories		STRNC-YEP					
8c ADDRESS (City, State, and ZIP Co Natick Research, Dev		and	PROGRAM	FUNDING NUMBER	TASK	WORK UNIT	
Engineering Center			ELEMENT NO.	NO.	NO.	ACCESSION NO.	
11. TITLE (Include Security Classifica Trichloromelamine, P 12. PERSONAL AUTHOR(S) Mark Michie, Richard 13a. TYPE OF REPORT Final	hase 2 - A. Anger	rhofer	14. DATE OF REPO	ORT (Year, Month,		PAGE COUNT 67	
16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)							
	B-GROUP	Trichloroemela					
FIELD GROUP 30	GROOF				, ,, ,,		
19. ABSTRACT (Continue on reverse The subchronic study trichloromelamine (Twith the administrate causing engorgement lung and pituitary. 30 mg/kg/day. Trich acutely, and continu	rexamined CM) in radion of TO of the sm The no coloromelam	d the toxicity on the toxicity of the toxical description of the toxical de	f the food s al administr lesions in t ls of the ac effect leve considered m	ration for 9 the stomach irenals, bra el in the 90 noderately t	00 days, and tra lin, kid 0-day si coxic wl	. Associated achea, while also dneys, liver, tudy was	
20. DISTRIBUTION/AVAILABILITY C Z UNCLASSIFIED/UNLIMITED		RPT. DTIC USERS	UNCLASSIF				
228. NAME OF RESPONSIBLE INDIV MARK W. MICHIE/RICHA		GERHOFER	226. TELEPHONE (410)671-3	(include Area Cod 3980		FFICE SYMBOL SHB-MO-T	

DEPARTMENT OF THE ARMY U. S. ARMY ENVIRONMENTAL HYGIENE AGENCY ABERDEEN PROVING GROUND, MARYLAND 21010-6422

REPLY TO ATTENTION OF

EXECUTIVE SUMMARY PHASE 2 TOXICOLOGICAL STUDY NO. 75-51-0743-88(2) TRICHLOROMELAMINE 14-DAY RANGE FINDING AND 90-DAY SUBCHRONIC STUDIES IN RATS 3 AUGUST 1988 - 17 JANUARY 1989

- 1. PURPOSE. Information provided by this study will be used to establish safety criteria for human exposure. A preliminary 14-day range finding study was conducted to determine the effects of oral administration of TCM to establish reasonable dosage levels for the 90-day study. The subchronic study examined the toxicity of the food service disinfectant trichloromelamine (TCM) in rats following oral administration for 90 days.
- 2. CONCLUSIONS. Associated with the subchronic oral administration of TCM in rats were lesions in the stomach and trachea while also causing engorgement of the small blood vessels of the adrenals, brain, kidneys, liver, lung and pituitary, as well as pulmonary edema. The no observed adverse effect level for the oral administration of TCM to rats was 30 mg/kg/day in the 90-day study. Trichloromelamine should be considered moderately toxic when ingested acutely, and continuous ingestion could cause serious health effects.
- 3. RECOMMENDATIONS. Proceed with the use of TCM as a food service disinfectant. Use of TCM as directed will limit overexposure and resulting health effects.

Accesio	on For				
1	CRA&I				
DTIC Unann	<u> </u>				
Justific	ation				
By Distrib	ution /				
А	vailability Codes				
Dist Avail and for Special					
A-1					

DEPARTMENT OF THE ARMY U.S. ARMY ENVIRONMENTAL HYGIENE AGENCY ABERDEEN PROVING GROUND, MARYLAND 21010-6422

REPLY TO ATTENTION OF

PHASE 2 TOXICOLOGICAL STUDY NO. 75-51-0743-88(2) TRICHLOROMELAMINE 14-DAY RANGE FINDING AND 90-DAY SUBCHRONIC STUDIES IN RATS 3 AUGUST 1988 - 17 JANUARY 1989

- 1. REFERENCES. See Appendix A.
- 2. AUTHORITY.
- a. Letter, HSCL-P, 26 August 1987, subject: Toxicity Clearance for Trichloromelamine, Active Ingredient in Disinfectant, Food Service (MIL-D-11309).
- b. Letter, United States Environmental Protection Agency (EPA), 4 Mar 1987, subject: Data Call-In Notice for Subchronic Toxicological Data for Antimicrobial Pesticide Active Ingredients.

3. PURPOSE.

- a. A preliminary 14-day range finding study was conducted to determine the effects of oral administration of trichloromelamine (TCM) over a 14-day period. Results of this study were used to establish appropriate dosage levels for the subsequent 90-day study.
- b. To determine the toxicity of the food service disinfectant TCM in rats following oral administration for 90 days. Information provided from this study will be used to establish safety criteria for human exposure.

4. BACKGROUND.

- a. The U.S. Army Environmental Hygiene Agency (USAEHA) was initially tasked to evaluate the acute toxicities of TCM in July 1976, USAEHA Study Nos. 75-51-0124-76 and 75-51-0195-84 (reference 1). Mutagenicity, aquatic lethality studies, dominant lethal, and Shimkin Mouse assays were completed between 1984 and 1987 under USAEHA contract Study Nos. 75-51-0195-87 and 75-51-0668-86 (references 2-6).
- b. In 1987, the U.S. Environmental Protection Agency (EPA) issued a Data Call-In Notice for subchronic toxicity data on all antimicrobial pesticide active ingredients. A search of available literature revealed a lack of subchronic animal toxicity data for TCM. This 90-day study was initiated to

further assess the subchronic toxicity of TCM, and to support required testing set forth by the EPA to maintain the Army's registration of TCM as a food service disinfectant.

5. MATERIALS AND METHODS.

a. <u>Test Substance</u>. The test material, trichloromelamine (CAS Registry Number 7673-09-8), technical grade, lot number 2342, was procured from Dorex Inc., 121 Ontario St., Frankfort, IL 60423. Trichloromelamine is a fine, white to light tan powder with a solubility in water of 0.34 grams/liter at 25 °C. The molecular formula is C3-H3-Cl3-N6, with a molecular weight of 229.47, and a chemical structure as follows:

Trichloromelamine is an oxidizing compound that reacts with reducing agents or organic compounds. Mixtures of TCM with rodent chow will produce a reaction that binds all free chlorine. Analysis of feed by free chlorine determination (Standard Methods 408A - Appendix B) to ascertain TCM concentrations in the feed was therefore not possible. Gavage was chosen as the method of compound administration to enable dosages to be verified by analytical means. Due to the low solubility of TCM in water, suspensions of the compound in water were used to achieve necessary concentrations, while keeping dosing volumes within guidelines.

- b. <u>Animals</u>. Young, adult Sprague-Dawley male and female rats used in the studies were supplied by Charles River Laboratories Incorporated, Wilmington, Massachusetts. Female rats were both nulliparous and nonpregnant. Animals were toe clipped for identification purposes.
- c. <u>Diet</u>. Certified Rodent Ration, manufactured by Zeigler Brothers, Inc., Gardners, Pennsylvania (Appendix C), was given <u>ad libitum</u> throughout the studies. Water was also continuously available to all rats throughout the study.

- d. <u>Environment</u>. Temperature and relative humidity in the housing area were maintained at 72 \pm 6 °F, and 40 to 70 percent, respectively, with 12 hours of lighting each day.
- e. <u>Housing</u>. Rats were housed individually in hanging stainless-steel cages measuring 40 cm high X 60 cm wide X 60 cm deep, equipped with bottled water and wire-lab block feeder.

f. 14-Day Study.

- (1) A 14-day range finding study was conducted in male and female rats in accordance with the Toxicology Division standing operating procedure (SOP) for 14- and 90-Day Feeding Studies (reference 7).
- (2) Forty-eight male and forty-eight female Sprague Dawley, Caesarean-derived, Barrier Restrained rats 6 to 8 weeks old were purchased from Charles River Laboratories of Wilmington, Massachusetts. Following a 1-week acclimation period, animals were randomly distributed into eight dosage groups of six rats, each sex. Daily dosage levels were set at 0, 25, 50, 100, 200, 400, 800, and 1,600 mg/kg/day. Animals were dosed by gavage on a 7 day per week basis, with a staggered start between males and females to accommodate terminal necropsies.
- (3) A fresh 100 mg/ml working suspension of TCM in distilled water was made daily. The suspension was randomly sampled and independently verified for content by free chlorine analysis. Daily doses were calculated automatically by computer and reflected updated body weight values as they occurred.
- (4) Body weights and food consumption were measured and recorded on days 0, 1, 3, 7, and 14. Animals were observed daily for toxic signs. Water consumption was not monitored during this study.
- (5) Prior to necropsy on the final day of test, blood samples were collected by intracardiac puncture from all study rats. Clinical chemistry and hematology values were determined from all valid samples. The Table lists the clinical tests performed on the blood samples taken.
- (6) Following the 14-day study period, surviving rats were sacrificed by decapitation and necropsied. The brain, liver, kidneys, spleen, and testes/ovaries were removed and weighed. These weights were used for calculations of organ-to-brain and organ-to-body weight ratios. Vital organs were saved for possible histological examination.

TABLE. CLINICAL TESTS

Clinical Chemistry	Hematology
Alkaline phosphatase Glutamate oxalacetate transaminase (SGOT) Glutamate pyruvate transaminase (SGPT) Glutamyltranspeptidase (GGTP) Glucose Calcium Total bilirubin Blood urea nitrogen (BUN) Total protein	Hemoglobin Hematocrit Erythrocyte count Leukocyte count Differential count Platelet count

g. 90-Day Study.

- (1) A 90-day gavage study was conducted in rats in accordance with the Toxicology Division SOP for 14- and 90-day studies (reference 7).
- (2) Rats were acclimated for a 1-week period, then randomly distributed into five groups of ten of each sex. Dose levels were set at 0, 30, 150, and 300 mg/kg/day, based on clinical chemistry effects seen in the range finding study. A vehicle control was also included in the study to determine the toxic effects, if any, of the addition of a surfactant.
- (3) A fresh working suspension of 75 mg/mL TCM in distilled water was again made daily. Random samples were analyzed to verify the TCM concentrations of the working suspension. To keep the TCM suspended in the distilled water solution, constant stirring was required during compound administration. Due to foaming of the TCM during this procedure (observed during the 14-day study), a surfactant was added to diminish the effect. Triton X-100 (Octyl phenoxy polyethoxyethanol), distributed by Sigma Chemical Company, St. Louis, Missouri, was added to the working solution at a concentration of .08 percent. The vehicle control group received distilled water with a Triton X-100 concentration mimicking the TCM suspension.
- (4) Animals were dosed every day for the 90-day duration, with a staggered start between sexes. Rats in the control and vehicle control group were given volumes based on the

300 mg/kg dosage level. Body weights were recorded for all rats once per week. Dosage volumes were recalculated automatically by the laboratory software when body weights were updated.

- (5) Food and water were available <u>ad libitum</u> throughout the study. Food consumption was monitored on a Monday, Wednesday, and Friday basis during the study. Water consumption was not observed. Observations of toxic signs were made and recorded daily.
- (6) Animals not surviving to term or determined to be moribund, were subjected to full necropsies at the time of death, unless autolysis had occurred. On the final day of testing, prior to necropsy, animals were bled by intracardiac puncture for clinical chemistry and hematology determinations.
- (7) Rats surviving the 90-day duration were sacrificed by decapitation for necropsy. Following examination of external surfaces and internal cavities, major organs were removed, trimmed, and weighed for organ-to-body and organ-to-brain weight ratio calculations. Other organs and tissues collected and processed for microscopic examination (reference 8) included all gross lesions, brain, eye, pituitary, salivary gland, heart, thyroid, parathyroid, lungs, lymph node, trachea, esophagus, stomach, small and large intestines, adrenals, pancreas, liver, kidneys, urinary bladder, testes, prostate, ovaries, corpus and cervix uteri, skeletal muscle, and sections of sternebrae, vertebrae, and tibia-femoral joint with marrow.

6. RESULTS.

a. 14-Day Study.

- (1) Verification of the TCM working solution by standard methods (Appendix B) showed the suspension to contain an average of 96.5 percent of the predicted concentration.
- (2) Deaths occurred in 11 of 12 high dosage (1,600 mg/kg) male and female rats by day 3 of the study. The remaining female rat in this dosage group survived to term, becoming lethargic and emaciated. Two male rats from the 800 mg/kg group died after dosing on day 2, while a female rat of that same group died following dosing on day 9. Deaths in the 400 mg/kg dosage group occurred on day 9 and 10 for one male and one female rat, respectively (Appendix D). All other rats survived the 14-day dosing regimen with varying degrees of toxic signs, i.e., ruffled pelt, lethargy, diarrhea, emaciation, and labored breathing.

- (3) Analysis of variance using Duncan's procedure showed female rats in the highest dosage group had lowered food consumption by day 1 of the study, and again on days 3-7, when compared to the control group. Male rats in the high dosage group exhibited lowered food consumption by day 1 with associated deaths of all by day 3. Male rats in the 800 mg/kg group also showed reduced consumption on day 1 but returned to normal consumption by day 3 and for the remainder of the study (Appendix E).
- (4) Weight loss occurred in the two highest dosage groups (800 and 1,600 mg/kg) in both female and male rats by day 1 of the 14-day study (Appendix F). All remaining female rats in these groups recovered to normal consumption by day 3, but again experienced significant weight loss between days 3 to 7. The 800 mg/kg dosage group of male rats continued with weight loss through day 3 but reverted to normal gains for the remainder of the study. TCM did not significantly effect weight gains of the 25-400 mg/kg TCM groups.
- (5) Significant decreases in clinical chemistry values were seen in both sexes of rats at 14 days when compared to their respective control groups. Compound related changes occurred in total bilirubin, total protein and BUN values beginning in the 100 mg/kg dose and continuing through the 1,600 mg/kg dosage group in female rats. Males showed decreases in SGOT levels in the 200-1,600 mg/kg doses, decreases in BUN values in the 50-1,600 mg/kg levels, decreases in total protein values in the 100-1,600 mg/kg dosages, and increases in blood glucose levels in the 200-1,600 mg/kg dose groups (Appendix G).
- (6) No significant changes were seen in hematological parameters of TCM rats after 14 days, when compared to control group rats (Appendix H).
- (7) Gross necropsy of both sexes of rats revealed lung changes consisting of mottled, raised areas associated with the physical oral administration of the compound and control. The frequency of these changes was common to all groups and no dose response relationship associated with compound administration could be established. Foaming of dosing solutions due to continuous stirring seemed to be contributing to some lung congestion and lung changes.

(8) Organs taken at necropsy showed no significant differences in weight when TCM groups were compared with control organ weights (Appendix I). An analysis of organ-to-body weight ratios and organ-to-brain weight ratios also revealed no significant difference between controls and TCM groups.

b. 90-Day Study.

- (1) Analysis of random samples taken from the TCM working suspension during the study yielded an average recovery of 101 percent of the expected concentration.
- (2) No significant effects were observed in the surfactant (Triton-X 100) control group, indicating its addition to the TCM solutions had no bearing on the outcome of the study.
- (3) Weekly food consumption figures for the 90-day study are displayed in Appendix J. Female rats in the high dosage group showed significantly lower food consumption (when compared to that of the control group) during the eighth week, but returned to normal the following week. No significant depression in food consumption was seen with male rats.
- (4) Appendix K shows graphic representations of weight gains (loses) for both male and female rats. Significant weight loses were experienced during weeks 7 and 11 in female and male rats respectively. Both sexes returned to nonsignificant weight gains (loses) for the remainder of the study.
- (5) Blood taken prior to necropsy at 90 days revealed only minor significant changes in clinical chemistry values (Appendix L). Female rats in the 150 and 300 mg/kg dosage groups showed a decrease in calcium content, while male rats had decreased total protein values in the high-dose group and elevated sugar levels in the 150 mg/kg group. No trends could be established related to compound administration.
- (6) Examination of 90-day hematology values showed a significant decrease in the number of red blood cells in the 300 mg/kg male rats (Appendix M). No other significance was noted and again changes could not be directly related to TCM administration.
- (7) Appendix N lists 90-day organ weights, organ-to-body weight ratios, and organ-to-brain weight ratios. Liver weights of female rats in the 300 mg/kg dosage group showed a significant increase when taken as a percentage of their body weight.

- (8) Gross necropsies of animals in the 300 mg/kg and 150 mg/kg dosage groups, dying during the study, showed hemorrhagic erosion of the stomach mucosa as well as stomach and intestinal distention. Lungs from these rats exhibited varying degrees of congestion with white spotting. Rats surviving to term necropsy showed similar incidental signs across all groups with no dose response patterns being established.
- (9) The majority of nonsurviving rats were found to have congestion of multiple organs (adrenal glands, brain, kidneys, liver, lung and pituitary) following histopathologic evaluation. This condition consisted of engorgement of the small blood vessels with blood. One male and female rat from the high dosage group had suppurative tracheitis which consisted of neutrophilic infiltration in the wall of the trachea, with accumulation of inflammatory cells and debris in the trachea lumen. This unusual lesion was considered to be associated with compound administration, despite the overall low incidence rate.
- (10) Histopathologic examination of tissues and organs taken at necropsy revealed a low incidence of lesions in the nonglandular region of the stomach of male and female rats from the 300 mg/kg group (reference 9). Similar hyperplasia was noted in one male rat from the 150 mg/kg group. Chronic inflammation of the stomach consisted of a mixed inflammatory cell infiltration and a variable degree of inflammatory edema. Hyperplasia of the nonglandular epithelium consisted of thickening and irregularity of epithelial lining. These lesions were graded as mild or moderate and were considered to be associated with compound administration.

7. DISCUSSION.

- a. Necropsies of high d sage (300 mg/kg/day or greater) rats dying during the conduct of the 14- and 90-day studies showed deaths were associated with the physical aspects of oral administration of TCM. Irritation and erosion of the mucosal linings of the stomach and intestine as well as multiple organ congestion were common to animals not surviving to term. Surviving high dosage animals generally suffered from labored breathing, lethargy and diarrhea with resulting weight loss.
- b. Histopathological examination of tissues and organs from the 90-day study also showed chronic inflammation of the stomach with edema and thickening of the epithelial lining. These mild to moderate lesions were seen in one 150 mg/kg/day rat and several at the 300 mg/kg/day level. One male and female rat from

the 300 mg/kg/day dosage group had suppurative tracheitis which was considered associated with compound administration, despite the overall low incidence.

- c. Short term exposure to TCM caused significant blood chemistry changes seen in the 100-200 mg/kg/day TCM range, after 14 days. Surviving rats recovering from the initial insult and blood taken after the 90-day study showed little effect relating to chemistry values. Blood taken at 90-days from the 300 mg/kg/day male rats had a significant decrease in red blood cells, while hemoglobin and hematocrits for the same animals appear to be near significance when compared to other groups. This anemia is possibly linked to subchronic TCM exposure, although no clear dose response was established as conformation.
- 8. CONCLUSIONS. The conclusions from the 90-day study follow:
- a. The no observed adverse effect level for oral administration of TCM to rats was 30 mg/kg/day.
- b. The effect level for oral TCM administration to rats was 150 mg/kg/day, where moderate lesions were seen in the non-glandular epithelial lining of the stomach.
- c. The subchronic oral administration of TCM in rats was associated with lesions in the stomach and trachea, while causing engorgement of the small blood vessels of the adrenal glands, brain, kidneys, liver, lung and pituitary as well as pulmonary edema. Red blood cell anemia was observed in high dosage male rats, which may have been associated with TCM exposure.
- d. Trichloromelamine should be considered moderately toxic when ingested acutely, and continuous ingestion could cause serious health effects.

9. RECOMMENDATIONS.

a. Proceed with the use of TCM as a food service disinfectant. Use of TCM as directed will limit overexposure and resulting health effects.

b. Continue with recommended animal testing required to support the Army's registration for TCM usage with the EPA.

MARK W. MICHIE

Biologist

Toxicology Division

Ruhatiq

Mail Wilhelis

RICHARD A. ANGERHOFER

Biologist

Toxicology Division

APPROVED:

MAURICE H. WEEKS

Chief, Toxicology Division

APPENDIX A

REFERENCES

- 1. Technical Report, Study No. 75-51-0195-84, this Agency, subject: Preliminary Assessment of the Relative Toxicity of Candidate Disinfectant, Food Service (Chlorine-Iodine Type), NSN 6840-00-810-6396 and Trichloromelamine.
- 2. Technical Report, Study No. 75-51-0195-87, Hazelton Laboratories America, Inc., January 1987, subject: Mutagenicity of Trichloromelamine in a Mouse Lymphoma Mutation Assay.
- 3. Technical Report, Study No. 75-51-0668-86, Hazelton Laboratories America, Inc., December 1986, subject: Clastogenic Evaluation of Trichloromelamine in a In Vitro Cytogenic Assay Measuring Chromosomal Aberration Frequencies in Chinese Hamster Ovary (CHO) Cells.
- 4. Technical Report, Study No. 75-51-0195-87, Hazelton Laboratories America, Inc., January 1987, subject: Evaluation of Trichloromelamine in the Rat Primary Hepatocyte Unscheduled DNA Synthesis Assay.
- 5. Technical Report, Study No. 75-51-0668-87, Hazelton Laboratories America Inc., January 1987, subject: Mutagenicity Evaluation of Trichloromelamine, Lot #1933, Dorex, Inc., in the Ames Salmonella/Microsome Reverse Mutation Assay.
- 6. Technical Reports, Study Nos. 34811, 34812, 34813, Analytical Biochemistry Laboratories, August 1986, Acute Toxicity of Trichloromelamine to Bluegill Sunfish, Rainbow Trout, and <u>Daphnia magna</u>.
- 7. Standing Operating Procedure No. 63, USAEHA, Toxicology Division, December 1987, 14-Day Range Finding and 90-Day Feeding Study in Rats.
- 8. Standing Operating Procedure, Pathology Laboratory, Pathology and Animal Care Branch, Toxicology Division, Room 3201, Building E-2100.
- 9. Termination Pathology Report, Trichloromelamine: 90-Day Feeding Study in Rats, Study #40-0743-88, George A. Parker, D.V.M., Ltd, 27 July 1989.

APPENDIX B

VERIFICATION OF TCM BY STANDARD METHODS

408 A. lodometric Method I

1. General Discussion

a. Principle: Chlorine will liberate free iodine from potassium iodide (KI) solutions at pH 8 or less. The liberated iodine is titrated with a standard solution of sodium thiosulfate (Na₂S₂O₃) with starch as the indicator. Titrate at pH 3 to 4 because the reaction is not stoichiometric at neutral pH due to partial oxidation of thiosulfate to sulfate.

b. Interference: Oxidized forms of manganese and other oxidizing agents interfere. Reducing agents such as organic sulfides also interfere. Although the neutral titration minimizes the interfering effect of ferric and nitrite ions, the acid titration is preferred because some forms of combined chlorine do not react at pH 7. Use only acetic acid for the acid titration; sulfuric acid (H₂SO₄) will increase interferences; never use hydrochloric acid (HCl). See Section 408.1 for discussion of other interferences.

c. Minimum detectable concentration: The minimum detectable concentration approximates 40 µg Cl as Cl₂/L if 0.01N Na₂S₂O₃ is used with a 1000-mL sample. Concentrations below 1 mg/L cannot be determined accurately by the starch-iodide end point used in this method. Lower concentrations can be measured with the amperometric end point in Methods B and C.

This initial storage is necessary to allow oxidation of any bisulfite ion present. Use boiled distilled water and add a few milliliters chloroform (CHCl₃) to minimize bacterial decomposition.

Standardize 0.1N Na₂S₂O₃ by one of the following:

1) Iodate method—Dissolve 3.249 g anhydrous potassium bi-iodate, $KH(1O_3)_2$, primary standard quality, or 3.567 g KIO₃ dried at $103 \pm 2^{\circ}C$ for 1 h, in distilled water and dilute to 1000 mL to yield a 0.1000N solution. Store in a glass-stoppered bottle.

To 80 mL distilled water, add, with constant stirring, 1 mL conc H₂SO₄, 10.00 mL 0.1000N KH(IO₃)₂, and 1 g KI. Titrate immediately with 0.1N Na₂S₂O₃ titrant until the yellow color of the liberated iodine almost is discharged. Add 1 mL starch indicator solution and continue titrating until the blue color disappears.

2) Dichromate method—Dissolve 4.904 g anhydrous potassium dichromate, $K_2Cr_2O_7$, of primary standard quality, in distilled water and dilute to 1000 mL to yield a 0.1000N solution. Store in a glass-stoppered bottle.

Proceed as in the iodate method, with the following exceptions: Substitute 10.00 mL 0.1000N K₂Cr₂O₇ for iodate and let reaction mixture stand 6 min in the dark before titrating with 0.1N Na₂S₂O₃ titrant.

2. Reagents

- a. Acetic acid, conc (glacial).
- b. Potassium iodide, KI, crystals.
- c. Standard sodium thiosulfate, 0.1N: Dissolve 25 g Na₂S₂O₃·5H₂O in 1 L freshly boiled distilled water and standardize against potassium bi-iodate or potassium dichromate after at least 2 weeks storage.

Normality $Na_1S_2O_3 = \frac{1}{mL Na_1S_2O_3 consumed}$

d. Standard sodium thiosulfate titrant, 0.01N or 0.025N: Improve the stability of 0.01N or 0.025N Na₂S₂O₃ by diluting an aged 0.1N solution, made as directed above, with freshly boiled distilled water. Add 4

g sodium borate and 10 mg mercuric iodide/L solution. For accurate work, standardize this solution daily in accordance with the directions given above, using 0.01N or 0.025N iodate or $K_2Cr_2O_7$. Use sufficient volumes of these standard solutions so that their final dilution is not greater than 1 + 4. To speed up operations where many samples must be titrated use an automatic buret of a type in which rubber does not come in contact with the solution. Standard titrants, 0.0100N and 0.0250N, are equivalent, respectively, to $354.5 \mu g$ and $886.3 \mu g$ Cl as $Cl_2/1.00$ mL.

e. Starch indicator solution: To 5 g starch (potato, arrowroot, or soluble), add a little cold water and grind in a mortar to a thin paste. Pour into 1 L of boiling distilled water, stir, and let settle overnight. Use clear supernate. Preserve with 1.25 g salicylic acid, 4 g zinc chloride, or a combination of 4 g sodium propionate and 2 g sodium azide/L starch solution. Some commercial starch substitutes are satisfactory.

f. Standard iodine, 0.1N: See 408B.3g.

g. Dilute standard iodine, 0.0282N: See 408B.3h.

3. Procedure

a. Volume of sample: Select a sample volume that will require no more than 20 mL 0.01N Na₂S₂O₃ and no less than 0.2 mL for the starch-iodide end point. For a chlorine range of 1 to 10 mg/L, use a 500-mL sample; above 10 mg/L, use proportionately less sample. Use smaller samples and volumes of titrant with the amperometric end point.

b. Preparation for titration: Place 5 mL acetic acid, or enough to reduce the pH to between 3.0 and 4.0, in a flask or white porcelain casserole. Add about 1 g KI estimated on a spatula. Pour sample in and mix with a stirring rod.

c. Titration: Titrate away from direct sunlight. Add 0.025N or 0.01N Na₂S₂O₃ from a burst until the yellow color of the

liberated iodine almost is discharged. Add 1 mL starch solution and titrate until blue color is discharged.

If the titration is made with 0.025N Na₂S₂O₃ instead of 0.01N, then, with a 1-L sample, 1 drop is equivalent to about 50 μ g/L. It is not possible to discern the end point with greater accuracy.

d. Blank titration: Correct result of sample titration by determining blank contributed by oxidizing or reducing reagent impurities. The blank also compensates for the concentration of iodine bound to starch at the end point.

Take a volume of distilled water corresponding to the sample used for titration in ¶s 3a-c, add 5 mL acetic acid, 1 g KI, and 1 mL starch solution. Perform blank titration as in 1) or 2) below, whichever applies.

1) If a blue color develops, titrate with 0.01N or 0.025N Na₂S₂O₃ to disappearance of blue color and record result.

 If no blue color occurs, titrate with 0.0282N iodine solution until a blue color appears. Back-titrate with 0.01N or 0.025N Na.S.O. and record the difference.

Before calculating the chlorine concentration, subtract the blank titration of ¶ 1) from the sample titration; or, if necessary, add the net equivalent value of the blank titration of ¶ 2).

4. Calculation

For standardizing chlorine solution for temporary standards:

mg Cl as Cl₂/mL =
$$\frac{(A \pm B) \times N \times 35.45}{\text{mL sample}}$$

For determining total available residual chlorine in a water sample:

mg Cl as Cl₂/L =
$$\frac{(A \pm B) \times N \times 35450}{\text{mL sample}}$$

where:

A = mL titration for sample,

B = mL titration for blank (positive or negative), and

 $N = \text{normality of Na₂S₂O₃$.

5. Precision and Accuracy

nine methods used to analyze synthetic available.

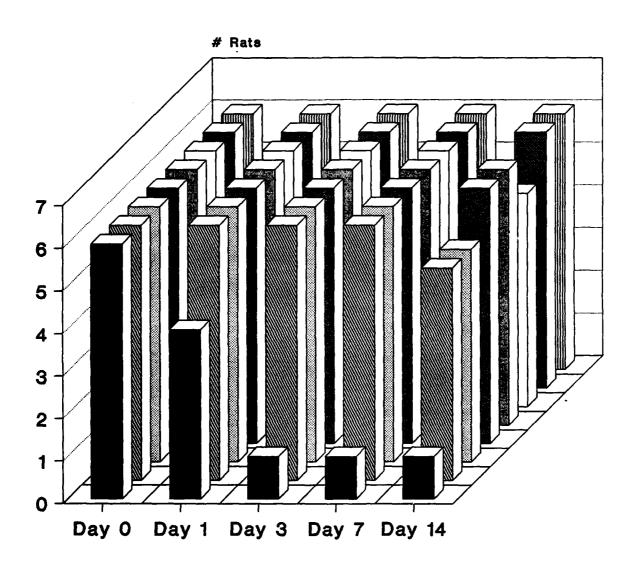
water samples without interferences; variations of five of the methods appear in this References 1 and 2 give the results of edition. More current data are not now

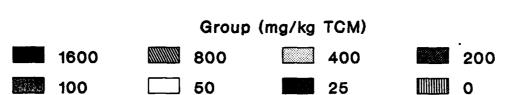
APPENDIX C CERTIFIED RODENT RATION

(ABERDEEN - 07)

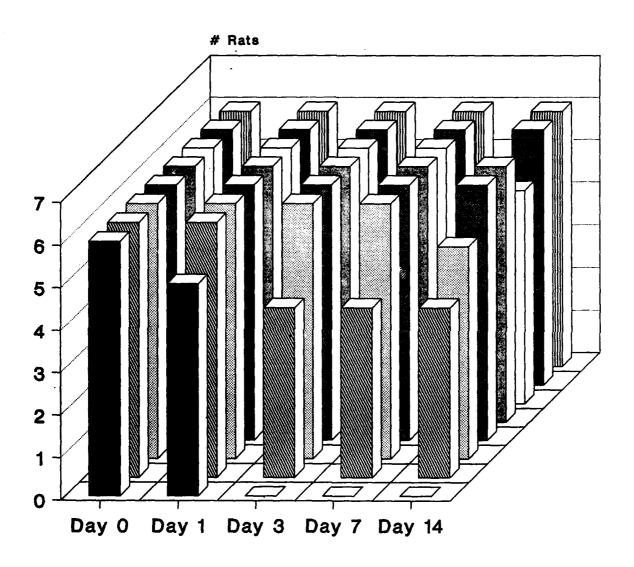
NET WT. 22.7 Kg (50 Lbs.)

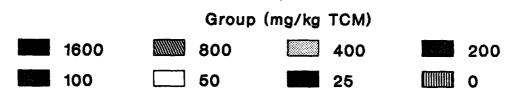
GUARANTEED ANALYSIS


Crude Protein Min. 20.0%
Crude Fat Min. 4.5%
Crude Fiber Max 5.0%
Ash Max 7.0%


ZEIGLER BROS., INC.
P.O. Box 95
Gardners, PA. 17324

APPENDIX D


14-DAY SURVIVABILITY OF MALE AND FEMALE RATS


14-DAY TCM STUDY #75-51-0743-88 SURVIVABILITY - FEMALE RATS

14-DAY TCM STUDY #75-51-0743-88 SURVIVABILITY - MALE RATS

APPENDIX E

14-DAY FOOD CONSUMPTION OF MALE AND FEMALE RATS

14-DAY TCM STUDY NO. 75-51-0743-88(2) SUMMARY OF FOOD CONSUMPTION (GRAMS) FEMALE RATS

Period	Group	Control	2 25mg/kg	3 50mg/kg	4 100mg/kg	5 200mg/kg	6 400mg/kg	7 800mg/kg	8 1600mg/kg
Day 0-1	MEAN .	20.8	20.3	21.2	21.2	19.5	20.3	13.8	6.8
	Z	9	9	9	9	9	9	9	च
Day 1-3	MEAN	43.2	41.2	. 44.5	40.2	35.8	40.3	35.0	30.0
	S.D.	4 .0	3.6	3.9	. s. s	13.0	7.1	12.6	1 +
	4	•	•	•	•	o	o		•
Day 3-7	MEAN	85.7	80.7	87.5	79.5	82.8	73.7	64.8	46.0*
	S.D.	10.0	11.0	8.7	ਜ-#	9.9	14.7	14.5	•
	z	v .	9	9	9	9	9	9	ત
Day 7-14	MEAN	151.5	142.3	149.0	140.2	150.8	132.0	133.3	140.0
	S.D.	13.1	17.5	27.3	9	& &	23.2	18.7	• ,
	z	9	9	Ŋ	v	φ	w	ហ	ન

* Indicates significance at the 0.05 level.

14-DAY TCM STUDY NO. 75-51-0743-88(2) SUMMARY OF FOOD CONSUMPTION (GRAMS) MALE RATS

Period	Group	Control	2 25mg/kg	3 50mg/kg	100mg/kg	5 200mg/kg	6 400mg/kg	7 800mg/kg	8 1600mg/kg
Day 0-1	MEAN	28.7	27.2	28.5	28.5	26.0	27.7	14.8*	6.2*
	S.D.	2.0	5.0	3.6	3.1	5.1	2.7	11.3	6.5
	Z	y	y	v	9	v	v	v	'n
Day 1-3	MEAN	54.5	41.0	53.8	54.0	64.3	49.0	28.0	1
	S.D.	5.3	22.1	5.3	3.5	12.5	18.9	14.9	•
	z	.	9	6	v	ø	v	4	0
Day 37	MEAN	113.7	103.7	111.2	115.3	101.2	114.0	103.0	•
	S.D.	9.6	22.0	5.3	7.4	17.6	14.6	4.7	•
	Z	9	y	,	v	v	9	'0	0
Day 7-14	MEAN	207.5	210.8	196.2	210.3	193.3	209.6	178.3	ł
	S.D.	27.8	15.9	17.5	18.6	22.7	42.5	19.9	•
	z	9	y	9	9	9	S	4	0

* Indicates significance at the 0.05 level.

APPENDIX F

14-DAY WEIGHT GAINS/LOSS OF MALE AND FEMALE RATS

14-DAY TCM STUDY NO. 75-51-0743-88(2) SUMMARY OF WEIGHT GAINS (GRAMS) FEMALE RATS

Period	Group	Control	2 25mg/kg	3 50mg/kg	4 100mg/kg	5 200mg/kg	6 400mg/kg	7 800mg/kg	8 1600mg/kg
Days 0-1	MEAN	5.3	0.4	5.0	4.5	2.2	2.5	-1.8*	-11.5*
J	S.D.	1.4	2.4	3.5	2.8	4.7	5.0	5.5	6.95
	Z	v	9	9	v	9 ,	9	9	4
Day 1-3	MEAN	6.8	5.7	6.3	7.2	2.7	4.7	6.2	6.0
	S.D.	4.6	1.8	3.6	2.0	8.7	6.9	6.2	0.0
	Z	φ	v	φ	v	9	9	9	7
Day 3-7	MEAN	11,7	10.2	13.2	10.0	11.8	0.5	-5.3*	-20.0*
1	S.D.	4.2	3.1	2.5	3.6	4.1	16.3	17.8	0.0
	Z	o '	9	v	v	.	9	y	H
Day 7-14	MEAN	23.5	21.0	25.4	19.2	29.2	23.0	24.2	44.0
ĺ	S.D.	9.9	3.3	7.1	5.5	4.7	8.6	22.3	0.0
	Z	y	9	ហ	9	9	ហ	Ŋ	Ħ
Total Gain	MEAN	47.3	40.8	59.4	40.8	45.8	28.8	23.2*	24.0
	S.D.	6.3	7.4	10.5	6.1	12.6	13.1	21.1	0.0
	z	y	9	ហ	9	ω	ഗ	ហ	H

* Indicates significance at the 0.05 level.

14-DAY TCM STUDY NO. 75-51-0743-88(2) SUMMARY OF WEIGHT GAINS (GRAMS) MALE RATS

Period	Group	1 Control	2 25mg/kg	3 50mg/kg	4 100mg/kg	5 200mg/kg	6 400mg/kg	7 800mg/kg	8 1600mg/kg
Day 0-1	MEAN S.D. N	6 2 9 1 3	3.2 10.4 6	ສ.ປ. ຄ ພ.ທ	6 2 3 6 2 3	& W &	6.0 1.7 6	-7.3* 14.0 6	-16.2* 11.3 5
Day 1-3	MEAN S.D.	11.7 3.6 6	1.3 21.0 6	12.0 2.9 6.9	4. 2.4. 3.4.	6.5 14.3 6	7.3 18.4 6	-8.0* 15.8	0
Day 3-7.	MEAN S.D. N	33.5 6.1	34.3 6.1	30.0	30.5	26.3 11.5 6	33.5 6.9	8.6.4 8.6.4	0
Day 7-14	MEAN S.D. N	50.5 10.1 6	55.0 9.2	44.7 13.0 6	52.7 4.6 6	51.5 6.8	51.6 11.4 5	42.3 13.5	0
Total Gain	MEAN S.D. N	105.0 17.3 6	93.8 22.9 6	95.2 13.2 6	104.8 9.1 6	91.2 18.8 6	98 33.2 4.8	67.5 27.2 4	0

* Indicates significance at the 0.05 level.

APPENDIX G

14-DAY CLINICAL CHEMISTRY SUMMARY OF MALE AND FEMALE RATS

14-DAY TCM STUDY NO. 75-51-0743-88(2) CLINICAL CHEMISTRY SUMMARY FRMALE RATS

		1	2	E	4	l.C	9	7	80
Test	Group	Group Control 25mg/kg	25mg/kg	50mg/kg	100mg/kg	200mg/kg	400mg/kg	800mg/kg	1600mg/kg
ALK. PHOS. IU/L	MEAN S.D. N	330.6 226.3 6	463.2 100.8 6	336.5 84.7 6	396.7 172.1	420.7 131.3	262.5 51.4 5	265.8 40.9 3	205.0
SGOT IU/L	MEAN S.D. N	117.2 37.2 6	103	86.7 15.4 6	88 8.0.4 ñ.v.	78.8 55.7 5	70.4 10.3 5	63.7 9.4	132.3 - 1
SGPT IU/L	MEAN S.D. N	34.8	37.1 3.1 6	38.6 7.8 6	38.9 4.4.4	86. 86. 10	35.1 4.9 5	38.3 3.11.8	41.5 - 1
GLUCOSE IU/L	MEAN S.D. N	144.2 23.6 6	152.6 25.2 6	140.5 19.6 6	135.9 11.1	147.7 9.3 5	152.0 7.0 5	148.7 8.4 3	181.4
TOT. BILI. MG/DL	MEAN S.D. N	0.0 0.1 6	00.5	0.5 6.1	0.0 4.1.4	0.0 4.1.0	0.3 0.1	0.0 3.1.	0.3*
BUN MG/DL	MEAN S.D. N	25.8 1.6 6	25.5 1.2 6	26.4.6 4.9	24.1* 3.0	21.2	18.3* 3.0	17.7*	17.6 1
TOT. PROT. G/DL	MEAN S.D. N	7.2 0.5 6	7.3 6.5	7.7 4.9	6.0 * 8.0	7.1 0.6 5	6.0 8.2 8.2	0.0 9.3	6.0
CALCIUM MG/DL	MEAN S.D. N	0.4.a	10.6 0.7 6	10.4 0.7 6	10.2	10.5 0.4 5	10.7 0.5 5	10.5 0.5 3	12.5

^{*} Indicates significance at the 0.05 level.

ALK. PHOS. - Alkaline Phosphatase SGOT - Serum Glutamic Oxaloacetic Transaminase SGPT - Serum Glutamic Pyruvic Transaminase TOT. BILI. - Total Bilirubin BUN - Blood Urea Nitrogen TOT. PROT. - Total Protein

14-DAY TCM STUDY NO. 75-51-0743-88(2) CLINICAL CHEMISTRY SUMMARY MALE RATS

Test	Group	Control	2 25mg/kg	3 50mg/kg	4 100mg/kg	5 200mg/kg	6 400mg/kg	7 800mg/kg	8 1600mg/kg
ALK. PHOS. IU/L	MEAN S.D. N	619.3 204.4 6	590.4 194.6 6	639.2 224.2 6	647.6 142.6 6	557.6 144.7 6	417.1 147.6 5	481.6 203.6 4	• • •
SGOT IU/L	MEAN S.D. N	121.0 23.2 6	118.2 11.9 6	113.1 13.2 6	117.5 16.4 6	85.5 8.2 6.2	85.0 20.8 50.8	4.37 4.94 4.94	
SGPT. IU/L	MEAN S.D. N	46.7 12.7 6	42.9 6.0.0	6. 8. 8. 8.	4 0 0 0 4	40.0 5.0	38.3 11.9 5	39.2	
GLUCOSE IU/L	MEAN S.D. N	119.8 9.5 6	135.0 47.3 6	129.7 13.2 6	126.4 7.6 6	158.5* 25.8 6	151.1* 4.2 5	171.9* 7.9	
TOT. BILI. MG/DL	MEAN S.D. N	0.5	0.0 4.1.	4.1.	0 0 0 0 1 1 5	0.0 4.1.	0 0 c	.004 4.1.	
BUN MG/DL	MRAN S.D. N	25.9 1.7 6	23 3.4.6 4.4.	22.6* 1.1 6	22.2 22.0 6.0	16.3* 6.6	17.6* 2.1 5	16.6* 3.0	
TOT. PROT. G/DL	MEAN S.D. N	7.3 6.6	9.0 8.4.	6.7 6.3	. 0 . 0 . 6 . 6	6.0 4.2.0	6.1 4.0 5	6.2* 0.2	
CALCIUM MG/DL	MEAN S.D. N	10.4 0.5 6	10.6 1.0 6	10.4 0.6	10.4	10.6 0.8 6	10.3 0.4 5.4	10.5	

^{*} Indicates significance at the 0.05 level.

ALK. PHQS. - Alkaline Phosphatase SGOT - Serum Glutamic Oxaloacetic Transaminase SGPT - Serum Glutamic Pyruvic Transaminase TOT. BILI. - Total Bilirubin BUN - Blood Urea Nitrogen TOT. PROT. - Total Protein

APPENDIX H

14-DAY HEMATOLOGY VALUES OF MALE AND FEMALE RATS

ANALYSIS OF VARIANCE

14-DAY TOM STUDY NO. 75-51-0743-88(2) FEMALE RATS - HEMOGLOBIN (g/dl)

	SUM OF SQUARES	1803.50 1499.16 1575.90 1270.26 1307.07	8119.95				
	GRAND TOTALS S		547.30 8	37.00	14.79		
	22	1 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9.0	1.00	0.00	E	
	6		0.00	1.0	0.0	ER	
	8 1600mg/kg	.0 14.5 15.3 14.4 18.2 13.6 .6 14.5 14.9 14.9 13.8 .3 15.5 14.3 14.9 15.1 .0 NS 14.7 14.1 14.0 .4 14.4 NS 15.3 13.9 .0 NS 15.5	13.60	1.00	13.60	ERR	
	7 300mg/kg	18.2 13.8 15.1 14.0 13.9	75.00	5.00	15.00	1.67	SAMPLE
	6 100mg/kg 8	4.0 4.0 4.0 4.0 4.0 4.0	73.60	5.00	14.72	0.45	NS - INSUFFICIENT SAMPLE
GROUPS	5 200mg/kg 4	15.3 14.9 14.7 16.7 15.5	74.70	5.00	14.94	0.43	ts = INSUI
	4 100mg/kg	14.5 15.5 15.5 14.4	28.90	4.9	14.73	0.45	-
	3 50mg/kg	0.54 15.0 15.0 15.0	89.30	9.00	14.88	0.47	
	2 25mg/kg	13.4 14.5 16.0 15.0 14.1	87.80	9.00	14.63	0.80	∞
PATA	1 control	15.2 15.2 15.1 14.4 14.5 NS	74.40		14.88	0.35	of Group
* *	2			ation		>	•
	6		fotals	Deservation	Hean	Std Dev	
	&	793 .	Ĕ	5	Ī	Š	
	~	761 770 773 775 788					
	9	25 2 28 28 28 28 28 28 28 28 28 28 28 28 28					
GROUPS	40	760 783 783 88 88					
	•	798 788 788 862 863					
	m	767 886 886 886 886					
*	7	759 763 795 798 803					
ALIM	7	771 779 787 790 796 802					H-2

ANALYSIS OF VARIANCE TABLE

	F-table Lookup (num. 7, denom. 29) F RATIO .05 = 2.35 F RATIO .01	C INTERPORT OF THE PARTY OF THE PERISON OF THE PERI	CONCLUSIONS: AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .01 LEVEL.
F Ratio	0.38		
K ean Square	0.29	29 0.77	
Source Squares Freedom Square F Ratio	7 0.29 0.38	59	Totals 24.35 36
Sum of Squares	2.03	22.32	24.35
Source	Between Groups 2.03	Within Groups 22.32	Totals

ANALYSIS OF VARIANCE

14-DAY TCM STUDY NO. 75-51-0743-88(2) MALE RATS - HEMOGLOBIN (g/dl)

	SQUARES	1466.75 1338.61 1450.95 1554.83 1374.43	8471.37		
	GRAND TOTALS		574.30	39.00	14.73
	92		9	1.8	9.0
	6		0.00	1.00	0.00
	8 .600mg/kg	14.1 14.6 NS 13.3 14.9 13.3 5 14.7 14.8 1 16.0	0.0		0.00
GROUPS	7 300mg/kg 1	41 13 13 13 13 13 13 13 13 13 13 13 13 13	56.00		•
	6 400mg/kg 1	14.1 NS 14.9 14.7 16.0	74.70	5.80	14.94
	5 200mg/l	4443334	89.20	6.00	
	4 100mg/kg	15.5 13.9 13.9 15.0 15.0	89.10	6.00	14.85
	3 50mg/kg	41 13.6 13.8 14.5 15.6 15.6 15.6	88.80	9.90	14.80
*DATA	2 25mg/kg	14.0 14.3 14.8 15.7 14.0 14.0	88.10	9.9	14.68
	1 control	1.5.1 1.4.9 1.4.8 1.4.4 1.4.4	88.40	9.90	14.73
	 			at ion	
	G)		Totals	Observation	Mean
GROUPS	œ	!			
	~	827 835 851 858			
	9	853 853 857			
	40	813 834 837 849 849 861			
	4	852 852 853 853 853 853			
	က	853 853 863 863 863 863			
ARIMAL #	8	811 812 816 813 824 836 842 837 845 839 850 846 854 843 852 849 817 862 855 861			
	-	853 853 853 853 853 853	1		

ANALYSIS OF VARIANCE TABLE

8

8

8

0.70

0.51

0.64

0.65

0.26

Std Dev

of Group

NS - INSUFFICIENT SAMPLE 0.41 0.62

	F-table Lookup (num. 6,denom. 32) F RATIO .05 = 2.40	F KALLO .OL	CONCLOSIONS: AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .01 LEVEL.
F Ratio	1.17		1
Mean Square	0.43 1.17	32 0.37	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sum of Deg. of Mean Source Squares Freedom Square F Ratio			38
Sum of quares	Between Groups 2.59	11.84	Totals 14.43 38
Source S	Between Groups	Within Groups 11.84	Totals

ANALYSIS OF VARIANCE

14-DAY TCM STUDY NO. 75-51-0743-88(2) FEMALE RAIS - HEMATOCRIT (I)

																			ğ	LEVEL.
	SUM OF SQUARES	13115.05	10871.75	11401.82	9665.69	9543.27	937.10	59554.74											Š	52
	GRAND		-	•			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1482.40 59554.74	37.00	40.06	3								1	SIGNIFICANILY DIFFERENT AT SIGNIFICANILY DIFFERENT AT
	10	1						9.	1.00	5	3	8								ICANTLY D
	o n	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						8	1.00	5	3	83						. 29) 2.35		
	8 500mg/kg	36.6	}				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	36.60	1.8	36 60	8.8	0.0						F-table Lookup (num. 7, denom. 29) F RATIO .05 = 2.35		SES ARE NOT
	3 4 5 5 6 7 8 50mg/kg 100mg/kg 1600mg/kg 1600mg/kg	47.0	37.7	39.1	9.0	37.6		202.00	5.00	9	₹.	3.48	AMPLE					bokup (nus 05 =		CONCLUSIONS: AVERAGES ARE : AVERAGES ARE
	6 00mg/kg 8	20.0	3.65 2.0	40.3	88	41.3		200.10	5.00	9	40.02	1.12	FICIENT S					F-table Lo		CONCLUS 10
GROUPS	5 00mg/kg 4	40.6	4	9	39.5	Ş	45.4	201.80	2.00	•	40.36	1.31	NS - INSUFFICIENT SAMPLE							
9	00mg/kg 2		7. g	3.5	¥	2.8 8	S	158.80	8.4	1	39.70	1.48	-				F Ratio	0.49		
	3 50mg/kg 1		45.0 6.0	50.5 C	; c	41.5	41.6	242.10	6.9		40.35	1.84				: TABLE	M ean Square	2.46	5.0	
	2 25mg/kg		7.9°	7.4		£ 5.	37.8	237.60	9		39.60	2.50	∞			F VARIANCE TABLE	Deg. of Freedom	7	8	36
*DATA		i	5.5	41.0		30.1	옾	203.40	00		40.68	0.82	f of Group			AKALYSIS OK	Sum of Source Squares	n 17.22	36,361	
ş	2	#	•	R 4	• •	* *	#	<u>s</u>	Observation			ě	•	•		3	Source	Between Groups	Within	Totals
	6	į						Totals	ع و		Hean	Std Dev								
	∞	!	793																	
	1		197	2	23	ر د و	8													
			781	8	Ž	2 8	3													
	ις.	į	28	9	ĕ	8	88													
9	•		3 6	8	8	*	38	į												
	m	1	1 92	778	8	88	3													
•	~		759	763	191	8	88													
ANTHA	-		111	779	787	8	8 % 8 %						1	H-	4					

ANALYSIS OF VARIANCE

14-DAY TCM STUDY NO. 75-51-0743-88(2) MALE RATS - HEMATOCRIT (I)

		! مريا	*555										LEVEL.	LEVEL.
		SUM OF SQUARES	11512.44 10363.09 11264.59 11679.10 10280.51 9356.47	64456.2									AT .05	AT .01
		GRAND		1583.80 64456.20	39.00	40.61							IFFERENT	IFFEREN
		10		9.0	1.00	0.00	ER						SIGNIFICANTLY DIFFERENT AT .05	CANTLY D
		ø		9.0	1.00	0.00	ER					32) 2.40 3.42	. SIGNIFI	SIGNIFI
		8 .600mg/kg	2	0.00	1.00	0.00	ERR					F-table Lookup (rum. 6,denom. 32) F RATIO .05 = 2.40 F RATIO .01 = 3.42	GES ARE NOT	: AVERAGES ARE NOT
3		7 00mg/kg 1	36.3 36.3 40.5 5.0	151.70	4.00	37.93	2.33	SAMPLE				ookup (nu 05 = 01 =	NS: AVERA	: AVER
מבשותרע		6 DOmg/kg 8	39.1 RS 42.5 40.3 42.1	204.30	5.8	40.86	1.26	FICIENT S				F-table L RATIO	CONCLUSTO	
14 PAI 10F SIUDI NO. /3-31-U/43-66(2) FMLE KAIS " EKMIOGALI (4)	GROUPS	3 4 5 5 6 7 8 50mg/kg 100mg/kg 200mg/kg 400mg/kg 800mg/kg 1600mg/kg	43.2.2 38.2.2 38.6 5.6	245.10	6.00	40.85	1.34	NS . INSUFFICIENT SAMPLE						
WW (7)88.		oomg/kg	40.2 42.3 41.6 38.1	243.50	6.00	40.58	1.50				F Ratio	1.88		
-21-0/43-		3 50mg/kg 1	41.8 42.9 38.7 39.4 39.1	244.70	6.00	40.78	1.76			TABLE	Mean Square	5.97	3.18	
		2 25mg/kg !	i	249.60	6.00	41.60	1.76	7		ANALYSIS OF VARIANCE TABLE	Deg. of Freedom	9	32	88
	ITA	1 control 2	į	244.90	6.00	40.82	1.33	of Group		ALYSIS OF	Sum of Source Squares	35.82	101.86	137.68
	*DATA	* * *			r fon			*		¥	urce	Between Groups	Within Groups	Totals
•		9 10		Totals	Observation	Wean	Std Dev				S	125	¥6	12
		ø												
		7	827 835 851 858											
		9	853 853 853											
	GROUPS	က	845 845 845 845 845	8										
	9	<₽	841 841 850 850											
		m	833 836 836 836 836	i										
	-	. ~	811 822 824 854	•										
	AMTMA	1	228 228 228 238 238 238 238 238 238 238						H-5	•				

ANALYSIS OF VARIANCE

14-DAY TCM STUDY NO. 75-51-0743-88(2) FEMALE RAIS - RED BLOOD CELLS (10E+6/µL)

	;	SQUARES	245.78 295.31 292.83 261.08 253.82	1581.24								č	AT .01 LEVEL.
		GRAND		241.49	37.00	6.53						1	
	;	2		o.0	1.8	0.00	83						SIGNIFICANTLY DIFFERENT SIGNIFICANTLY DIFFERENT
	,	o		0.0	1.8	9.0	ER				. 29) 2.35	66.0	
(4) (F)	,	8 600mg/kg	89.	5.89	1.8	5.89	0.00				. 7, denom		ES ARE NOT
(10ET6/pt.)		3 4 5 6 7 8 50mg/kg 100mg/kg 200mg/kg 400mg/kg 800mg/kg 1600mg/kg	7.83 6.17 6.59 6.75 6.10	33.44	2.00	69.9	0.62	MPLE			F-table Lookup (num. 7, denom. 29)		CUNCLUSIONS: AVERAGES AKE : AVERAGES ARE
	,	6 190 a ng/kg 8	6.55 6.55 6.59 6.59	31.31	5.00	97.9	0.39	NS - INSUFFICIENT SAMPLE			-table Lo		ONCLUSION.
SOLUCE		5 20 0m g/kg 4	6.29 6.29 6.62 6.62 6.62	33.17	2.00	6.63	0.22	NSNI - SN				•	-
		4 100mg/kg	6.66 6.39 6.72 8.72 8.44 8.44	26.21	4.00	6.55	0.14	_		ک اسا	1.12		4 4 1 1 1 1 1 1 1
	,	3 50mg/kg	6.57 6.37 6.18 6.18 6.89	39.20	9.00	6.53	0.22		E TABLE	Mean Square	0.16	0.14	
		2 25mg/kg	2.00 2.00 2.00 2.4.00 4.4.4	38.85	9.00	6.48	0.31	Φ	ANALYSIS OF VARIANCE TABLE	Deg. of Freedom		53	98
*DATA			6.59 6.86 6.86 6.62 8.51 8.51	33.42	5.00	6.68	0.14	of Group	WLYSIS O	Sum of Source Squares	1.09		5.09
Ŧ	,	* * * 9 6	* * * * * *	Totals	Observat fon	Kean	Std Dev	♣	₹	Source	Between Groups	Within Groups	Totals
			793			_	•						
	,	~	255 255 255 255 255 255 255 255 255 255										
		9	25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	! ! !									
		ro.	85288888888888888888888888888888888888										
		→	268 288 288 288 288										
		m	767 788 788 896 896	İ									
•		~	759 759 795 795 795 795 795										
AMTMA			771 786 786 786 892 892					н-6	5				

ANALYSIS OF VARIANCE

14-DAY TCH STUDY NO. 75-51-0743-88(2) MALE RATS - RED BLOOD CELLS (10E+6/µL)

												<u> </u>	
	SUM OF SQUARES	295.11 265.61 281.57 298.80 260.84 236.73	1638.66									7 OK 150	AT .01 LEVEL.
	GRAND TOTALS		252.53	39.00	6.48							CCOCNT	FFERENT /
	10		0.0	1.00	8.0	ER						19.50 TOUTET TANKE TO THE THE TANKE TO THE T	SIGNIFICANTLY DIFFERENT AT
	On .		0.00	3.8	9.0	æ					2.40	24.C	T SIGNIFI
	8 600mg/kg		0.00	1.00	0.00	ER					. 6, denom	ON JOY NO.	ES ARE NOT
	3 4 5 6 7 8 50mg/kg 100mg/kg 200mg/kg 400mg/kg 800mg/kg	6.63 5.61 6.29	24.49	4.00	6.12	0.38	AMPLE				Lookup (num. 6, denom05 =	- T	CONCLUSIONS: AVERAGES AND SANETHINGS
	6 00mg/kg 8	6.33 6.45 6.27 6.27 6.66	31.98	5.00	6.40	0.15	NS - INSUFFICIENT SAMPLE				F-table Lool F RATIO .05		יטתכברטאוטיי
GROUPS	5 00mg/kg 4	6.21 6.56 6.56 6.94 6.10	39.26	9.90	6.54	0.30	S = INSUF					•	•
G	4 30mg/kg 2	6.55 6.49 6.62 5.94 6.47	38.68	9.9	6.45	0.23	2 .			F Ratio	1.37		
	3 50mg/kg 1	6.63 6.95 6.21 7.00 6.37	39.59	9.00	9.90	0.29			TABLE		0.12	0.09	#
	2 25mg/kg	6.30 6.41 6.41 6.57 6.33	39.39	9.00	6.57	0.25	7		OF VARIANCE TABLE	Deg. of Freedom	9	32	88
*DATA	control	6.78 6.61 6.61 6.27 6.27	39.14	9.00	6.52	0.24	of Group		ANALYSIS OF		0.71	2.78	3.50
₹.	2	*****	Totals	Observation	_	Std Dev	•		Æ	Source	Between Groups	Within Groups	Totals
	6	i 9 1 1	Tot	SQ	Mean	Std							
	60	2848											
	9	815 827 825 835 844 851 853 858											
GROUPS	S.	8334 8 8337 8 846 8 846 8 846 8											•
3	·	8842 8852 8852 8852 8853 8853 8853 8853 885											
	m	812 831 833 833 843 862 862 862 862 862 862 862 862 862 862											
*		}											
ANIM. 4		3 824 8 845 8 854 3 817						u ~					
M	-	888888	}					H-7					

ANALYSIS OF VARIANCE

14-DAY TCH STUDY MO. 75-51-0743-88(2) FIZMLE RATS - HEAN CELL VOLUME (EL)

	유 <u>민</u>	88888	8				
	SUM OF	29657.00 25327.00 25688.00 21848.00 18494.00 10933.00	131947.00				
	GRAND		2179.00	36.00	60.53		
	91	1 	9.0	1.00	0.0	ER	
	6	6 6 8 8 9 9 9 1	8.	1.00	0.0	8	
	8 600mg/kg	61	61.00	1.00	61.00	0.00	
	3 4 5 6 7 8 50mg/kg 100mg/kg 200mg/kg 400mg/kg 800mg/kg 1600mg/kg	55 55 61 61	240.00	4.00	60.00	1.00	SAMPLE
	6 400mg/kg	22 62 62 62 62 62 62 62 62 62 62 62 62 6	307.00	5.00	61.40	1.20	FFICIENT
GROUPS	5 200mg/kg	į	301.00	9.00	60.20	0.75	NS - INSUFFICIENT
	4 100mg/kg	362888	240.00	4 .8	90.09	0.71	
		282888	367.00	6.00	61.17	1.34	
	2 25mg/kg	888888	362.00	6.90	60.33	1.70	60
•DATA		286988 286988	301.00	2.00	60.20	0.75	of Group
F.	2			t g			•
	6	8 9 8 9 9	Totals	Observation	Hean	Std Dev	
	∞	793					
	~	761 773 773 788					
1 4	•	782 794 794 801					
	ĸ	828888					
_	•	222288					
	m	5% 5% 8%					
•	~	25 25 25 25 25 25 25 25 25 25 25 25 25 2					
¥	-	727 787 788 788 805					H-8

	n. 28)	3.33			OT SIGNIFICANTLY DIFFERENT AT .05 LEVEL.	: AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .01 LEVEL.
		F RATIO .01 - 3.33				
F Ratio		. g				
Mean Square		1.43		1.68		
Deg. of Freedom	,	•		8 8		32
Sum of	3	10.01		46.97		26.97
Source Squares Freedom Square F Ratio	Between	sdnoun	Vithin	Groups		Totals

ANALYSIS OF VARIANCE

14-DAY TCM STUDY NO. 75-51-0743-88(2) MALE RATS - MEAN CELL VOLUME (FL)

	្ មន្តិ [888888	8								
	SUM OF SQUARES	26801.00 22824.00 27420.00 26926.00 23324.00	150498,								
	GRAND		2422.00 150498.00	39.00	62.10						
	2		8	1.00	0.00	83					
	6		9.0	1.00	0.00	83					. 32) 2.40 3.42
	3 4 5 6 7 8 50mg/kg 100mg/kg 200mg/kg 400mg/kg 800mg/kg 1600mg/kg		0.00	1.00	0.00	ERR	٠				F-table Lookup (num. 6,denom. 32) F RATIO .05 = 2.40 F RATIO .01 = 3.42
	7 800mg/kg	64 62 64 64 64	246.00	4.00	61.50	1.66	SAMPLE				ookup (n. 05 - 01 - 01 - 01 - 01 - 01 - 01 - 01 -
	6 100mg/kg {	64 65 64 64 64	317.00	5.00	63.40	1.36	NS - INSUFFICIENT SAMPLE				F-table (F RATIO F RATIO F
GROUPS	5 200mg/kg	65 61 62 63 63	372.00	6.00	62.00	1.63	NSNI = SN				
•	4 100mg/kg	62 62 63 64 65 64 65	374.00	9.00	62.33	1.49				F Ratio	1.31
	3 50mg/kg	62 62 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64	367.00	6.0	61.17	0.69			E TABLE	Mean Square	2.81
	2 25mg/kg	885 885 885 885	375.00	9.00	62.50	0.76	1		F VARIANC	Deg. of Freedom	9
*DATA	1 control	22222	371.00		61.83	1.46	of Group		ANALYSIS OF VARIANCE TABLE	Sum Squar	an s 16.89
Ŧ	2	*****	15	Observation	_	Dev	•			Source	Between Groups
	9		Totals	Obse	Mean	Std Dev					
	∞	1 1 1									
	7	8888									
አ	9	825 844 857									
GROUPS	ß	E & & & & & & & & & & & & & & & & & & &	;								
	4	850 852 852 853 853	3								
	m	833 836 836 836 836 836 836	3								
•	. ~	824 824 845 854	Ì					•• ^			
ANTRA	-	823 826 838 838 838	3					H-9	l		

CONCLUSIONS: AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .05 LEVEL. : AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .01 LEVEL.

2.15

32 ജ

68.70 85.59

Within Groups Totals

ANALYSIS OF VARIANCE

14-DAY TCM STUDY NO. 75-51-0743-88(2) FEMALE RATS - WHITE BLOOD CELLS (10E+3/µL)

	SUM OF	1096.23 450.71 539.54 532.61 611.30	3635.14				
	GRAND		348.00	37.00	9.41		
	01		0.0	1.8	9.0	83	
	o n		0.00	1.00	0.00	8	
	8 1600mg/kg	4 15.6 7.0 11.1 4 7.2 5.6 8 11.8 9.4 6 11.3 11.6 5 11.1 7.3	11.10	1.00	11.10	0.00	
	7 800mg/kg	0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00	40.90	5.00	8.18	2.10	SAMPLE
	6 100mg/kg 8	15.6 7.2 11.8 11.3	57.00	2.00	11.40	2.67	FICIENT !
GROUPS	8 5 ¥	E. 20 01 8 41	50.70	5.00	10.14	3.56	NS = INSUFFICIENT
.	4 1 100mg/kg 200	16.3 11.7 8.0 8.8 8.8	45.80	4.8	11.45	3.09	_
	3 50mg/kg 1	11.0 7.5 6.0 6.2 10.9	53.10	9.00	8.85	2.34	
	2 25mg/kg	8.0 7.3 8.2 16.4	56.10	6.00	9.35	3.19	æ
DATA	1 control	7.1 9.6 7.4 5.6 NS	33.30	5.00	99.9	1.99	of Group
₹*	* * * 9	*****	į	tion			•
	6	j 1 1	[otals	bservation	Hean	Std Dev	
		793	1	5	¥	S	
	7	751 773 773 788 788					
	9	25 25 25 25 25 25 25 25 25 25 25 25 25 2					
GROUPS	ω	823388					
	•	766 768 788 789 899					
	m	767 788 788 786 866 866					
# 1	~	25 26 26 26 26 26 26 26 26 26 26 26 26 26	 				
ANIMA	-	711 787 780 790 802				H-	10

	F-table Lookup (num. 7.denom. 29) F RATIO .05 = 2.35 F RATIO .01 = 3.33	CAMPITICATIONS, AVEDACES AGE MOT STEADYTT V DISEEDENT AT DE 1 EVEN	SUPPLIES AVENUES ARE NOT SIGNIFICANTLY DIFFERENT AT .01 LEVEL.
F Ratio	1.36		
Kean Square	7 12.75 1.36	9.41	
Sum of Deg. of Mean Source Squares Freedom Square F Ratio	7	59	36
Sum of Deg. of Aurce Squares Freedom	Setween Sroups 89.25	272.81	Totals 362.06
Source	Between Groups	Within Groups	Totals

ANALYSIS OF VARIANCE

14-DAY TCM STUDY NO. 75-51-0743-88(2) MALE RATS - WHITE BLOOD CELLS (10E+3/LL)

	SUN OF	1584.30 366.60	8.8	1.81 96	86.98	7668.45				
	-	88	167	116	124	<u> </u>				
	GRAND	; ! ! ! !				526.10	39.00	13.49		
	9	; ; ; ; ; ;				0.0	1.0	0.00	ERR	
	6					0.0	1.00	0.00	E	
	6 7 8 kg 400mg/kg 800mg/kg 1600mg/kg	\$ 			•	9.0	1.00	0.00	E	
	7 300mg/kg	17.8 9.2	19.2	16.7		62.90		15.73	3.87	:AMPLE
	6 00mg/kg 8	15.2 NS	15.6	13.8	12.2	70.70	5.00	14.14	1.20	FICIENT S
GROUPS	5 6 1 200mg/kg 400mg/kg 80	12.6 8.3	18.5	10.9	14.8	79.80	9.00	13.30	3.23	NS - INSUFFICIENT SAMPLE
.	4 100mg/kg 20	23.0	16.9	13.1	10.7	96.90	6.00	16.15	3.90	¥
	3 50mg/kg 10	12.7	14.7	11.9	15.3	79.20	6.00	13.20	1.51	
	2 25mg/kg	•					9.00	10.75	3.35	7
PDATA		12.1				72.10	9.00	12.02	4.94	of Group
₹.*	* * *	* *	*	* *	*		E jour			***
	01					rota 1s	Servation	5	Std Dev	
ı	G					Ē	8	Hean	Std	
	∞			~		<u> </u>				
	7	827								
S.	9	815 825								
GROUPS	S	2		-						
	4	8 8 8	3	සුදී	38					
	m	812 831	83	839	862					
*	2	811	824	£ 2	83,7					
MIM	-	823	829	888	8	;		F	I-1	1

	F-table Lookup (num. 6,denom. 32) F RATIO .05 = 2.40	71:0 To be an added to the control of the control o	CUNCLUSIONS: AVERAGES ARE NOT SIGNIFICANTY DIFFERENT AT .US LEVEL. : AVERAGES ARE NOT SIGNIFICANTY DIFFERENT AT .OI LEVEL.
F Ratio	1.47		
K ean Square	20.56 1.47	32 14.00	7# ## # # # # # # # # # # # # # # # # #
Sum of Deg. of Mean Source Squares Freedom Square F Ratio	9	32	otals 571.50 38
Sum of Squares	123.34	Within Groups 448.16	Totals 571.50 38
Source	Between Groups 123.34	Within Groups	Totals

APPENDIX I 14-DAY SUMMARY OF ORGAN WEIGHTS

14-DAY TCM STUDY #75-51-0743-88(2) SUMMARY OF ORGAN WEIGHTS (GRAMS) MALE RATS

ORGAN	GROUP	1 Control	2 25mg/kg	3 50mg/kg	4 100mg/kg	5 200mg/kg	6 400mg/kg	7 800mg/kg	8 1600mg/kg
Body Weight	MEAN S.D. N	302 25.0 6	293 28.2 6	295 16.9 6	305 18.3 6	285 30.8 6	303 38.6 5	262 17.3 4	
Brain	MEAN S.D. % BODY WT S.D. N	1.90 0.067 0.631 0.053 6	1.86 0.118 0.639 0.047 6	1.84 0.063 0.624 0.034 6	1.86 0.129 0.610 0.050 6	1.78 0.027 0.632 0.065 6	1.81 0.062 0.605 0.073 5	1.76 0.057 0.677 0.061 4	
Adrena 1s	MEAN S.D. BOOY WT S.D. BRAIN WT S.D. N	0.067 0.011 0.022 0.002 3.52 0.5	0.065 0.007 0.022 0.002 3.50 0.3	0.060 0.002 0.020 0.001 3.26 0.2	0.063 0.006 0.021 0.003 3.40 0.4	0.059 0.009 0.021 0.002 3.29 0.5	0.061 0.008 0.020 0.002 3.36 0.4	0.060 0.010 0.023 0.005 3.38 0.5	
Kidneys	S.D.	2.69 0.277 0.891 0.057 141.94 13.7	2.74 0.221 0.940 0.067 147.28 6.5 6	0.856 0.063	0.850 0.018	2.43 0.184 0.856 0.063 136.17 10.7 6	2.65 0.253 0.879 0.067 146.21 14.9 5	2.42 0.278 0.925 0.090 137.24 16.1	
Testes	S.D. * BODY WT	2.79 0.212 0.926 0.068 147.31 13.3 6	2.99 0.284 1.025 0.093 160.43 9.6	0.113 0.969 0.065 155.32	0.914 0.105 150-17	0.196 0.981 0.122 155.31	2.70 0.173 0.899 0.098 148.89 11.4 5	2.39 0.490 0.925 0.232 135.20 23.4 4	
Liver	MEAN S.D. BODY HT S.D. BRAIN HT S.D. N	2.823 5.142	14.52 1.636 4.957 0.232 779.08 69.1 6	1.509 4.799	2.324 4.915	1.653 4.546	14.80 3.414 4.829 0.592 814.61 179.3	13.24 1.716 5.049 0.355 753.15 114.4	

^{*} Indicates significance at the 0.05 level.

14-DAY TCM STUDY #75-51-0743-88(2) SUMMARY OF ORGAN WEIGHTS (GRAMS) FEMALE RATS

ORGAN	GROUP	Control	2 25mg/kg	3 50mg/kg	4 100mg/kg	5 200mg/kg	6 400mg/kg	7 800mg/kg	8 1600mg/kg
Body	MEAN	204	199	206	195	205	188	178	166
Weight	S.D. N	17.1 6	17.8 6	22.2 6	8.5 6	10.0 6	20.5 5	25.1 5	1
							-		
Brain	MEAN	1.71	1.72	1.67	1.73	1.72	1.73	1.70	1.64
	S.D.	0.082	0.036	A A76	0.055	0.083	0.029	0.137	
	* BODY WT	0.841	0.866 0.072	0.805 0.071 6	0.891 0.027	0.839	0.929	0.959 0.064	0.988
	S.D.		0.072	0.071		0.064			
	N	6	6	6	6	6	5	5	1
Adrenals	MEAN	0.071	0.063	0.065	0.075	0.072	0.079	0.068	0.080
ALI CHA IS	S.D.	0.008	0.011	0.005	0.010	0.008		0.006	0.000
	* BODY WT	0.035	0.032	0.031	0.038	0.035	0.042	0.039	0.048
	S.D.	0.003	0.006	0.007 3.91	0.005	0.005	0.006	0.006	
	* BRAIN WT	4.14	0.006 3.69	3.91	4.31	4.20	4.53	4.04	4.88
	S.D.	0.4	0.7	1.0	0.7	0.6	0.4	0.4	
	N	6	6	6	6	6	5	5	1
Kidneys	MEAN	1.68	1.68	1.74	1.67	1.75	1.64	1.71	1.75
-	S.D.	0.233	0.194	0.164	0.156	0.191	0.209	0.177	
	* BODY WT	0.821	0.850	0.825	0.859	0.856	0.872	0.974	1.054
	S.D.	0.061	0.115	0.057	0.080	0.094	0.039	0.157	106.71
	* BRAIN WT S.D.	98.07 10.9	98.12 10.6	103.56 6.8	96.46 8.6	102.10 9.8	94.87 11.5	101.09 10.6	106.71
	N.	6	6	6	6	6	5	5	1
		J	v	-	· ·	· ·	J	3	•
Övaries	MEAN	0.121	0.108	0.117 0.009	0.101	0.111	0.120	0.111	0.080
	S.D.	0.026	0.009	0.009	0.101 0.015	0.011	0.024	0.012	
	* BODY WT	0.059	0.054	0.057	U.U3Z	0.054	0.063	0.063 0.013	0.048
	S.D. * BRAIN WT	0.009 7.01	0.005 6.27	0.004 7.00 0.5	0.008 5.87	0.003	0.010 6.89	0.013 6.57	4.88
	S.D.	1.2	0.4	0.5	1.0	6.45 0.7	1.3	0.5/ 0.9	4.00
	N.	6	6	6	6	6	5	5	1
Liver	MEAN	9.82	9.30	9.98	9.03	10.05	9.17	8.81	9.17
	S.D.	1.008	0.984	1.363	0.591	1.133	1.160	1.774	
	* BODY WT	4.801	4.665	4.841	4.643	4.892	4.859	4.927	5.524
	S.D. * BRAIN WT	0.145	0.313 541.50 55.1	4.841 0.230 596.11 73.4	0.247	0.361	0.167	0.573	
	S.D.	5/3.00 51.2	541.5U 55 1	590.11 73.4	521.67 35.6	587.19 75.8	592.02 64.6	517.17 82.5	559.15
	N.	6	6	/3.4 6	33.0 6	/5.0 6	04.0 5	oz.s 5	1

^{*} Indicates significance at the 0.05 level.

APPENDIX J

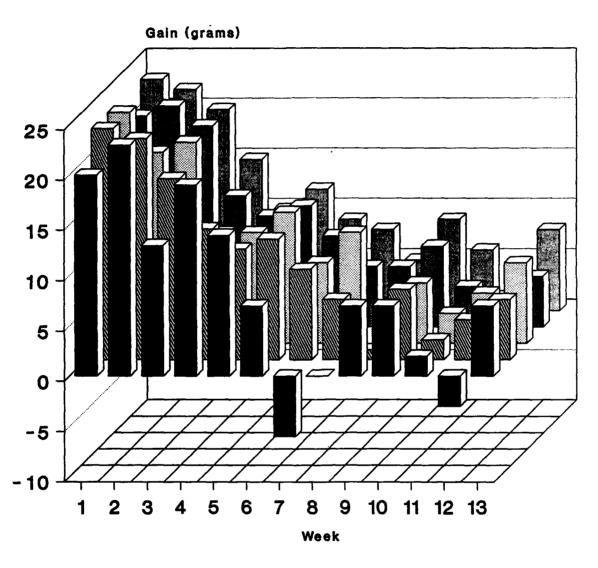
90-DAY FOOD CONSUMPTION OF MALE AND FEMALE RATS

90-DAY TCM STUDY #75-51-0743-88(2) SUMMARY OF FOOD CONSUMPTION (GRAMS) FEMALE RATS

WEEK	GROUP		2 Triton-X			
1	MEAN S.D. N	143 8.4 10		142 10.8 10	137 12.5 10	135 14.8 9
2	MEAN	149	149	153	148	145
	S.D.	11.6	18.5	10.9	17.5	17.0
	N	10	10	10	10	9
3	MEAN	151	152	152	153	147
	S.D.	13.1	13.4	14.8	8.2	14.6
	N	10	10	10	10	8
4	MEAN	158	154	154	153	155
	S.D.	13.4	16.9	14.2	9.1	18.5
	N	10	10	10	10	7
5	MEAN	161	159	161	161	169
	S.D.	12.8	20.1	16.7	10.3	16.6
	N	10	10	10	10	7
6	MEAN	160	159	163	163	164
	S.D.	16.9	17.3	20.7	17.7	30.4
	N	10	10	10	10	7
7	MEAN	161	158	164	158	142
	S.D.	12.8	19.8	24.0	27.8	22.8
	N	10	10	10	10	7
8	MEAN	170	161	172	160	137*
	S.D.	13.4	16.3	23.1	25.9	37.9
	N	10	10	10	9	7
9	MEAN	160	158	155	163	149
	S.D.	13.0	20.1	14.8	19.2	25.6
	N	10	10	10	7	10
10	MEAN	165	162	164	160	153
	S.D.	18.6	20.4	24.6	19.6	21.4
	N	10	10	10	7	7
11	MEAN	167	164	164	159	148
	S.D.	11.3	19.0	31.2	17.2	37.7
	N	10	10	10	7	7
12	MEAN	150	151	148	149	131
	S.D.	11.3	15.6	27.9	14.7	33.8
	N	10	10	10	7	7
13	MEAN	155	144	147	145	134
	S.D.	15.7	15.1	25.4	19.0	21.2
	N	8	10	10	7	6

^{*} Indicates significance at the 0.05 level.

90-DAY TCM STUDY \$75-51-0743-88 (2) SUMMARY OF FOOD CONSUMPTION (GRAMS) MALE RATS

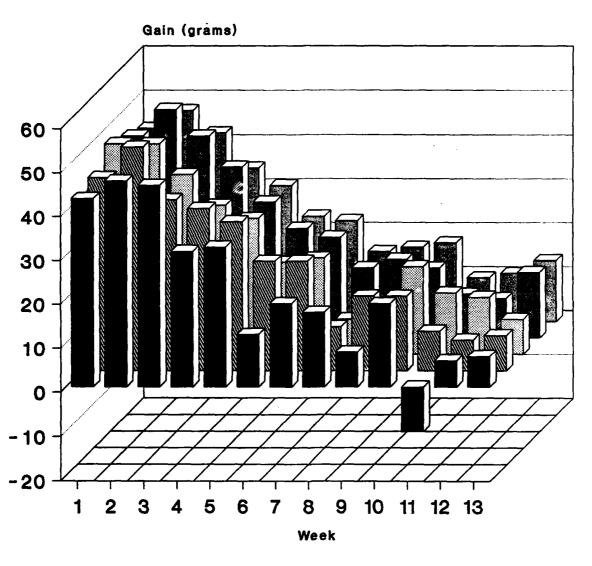

IEEK	GROUP	1 Water	2 · Triton-X	3 30mg/kg	4 150mg/kg	5 300mg/kg
1	MEAN	187	184	163	199	183
•	S.D.	26.0	12.7	45.7	42.0	13.5
	N	10	10	10	10	10
2	MEAN	206	209 27.1	199	202	198
	S.D.	26.5	27.1	16.4	- 22.8	15.1
	N	10	10	10	10	10
3	MEAN	209	212	203	207	214
	S.D.	25.8	16.7	25.5	32.5	18.9
	N	10	10	10	10	9
4	MEAN	222	226 -	214	225	224
	S.D.	29.3	20.0	24.3	26.4	29.2
	N	10	10	10	10	9
5	MEAN	222	223	213	226	221
	S.D.	33.7	20.9	26.0	31.7	31.4
	N	10	10	10	10	8
6	MEAN	227	235	222	235	212
	S.D.	36.6	20.2	23.7	42.2	47.3
	N	10	10	10	10	8
7	MEAN	228	237 21.8	221	240	214
	S.D.	36.5		25.6	39.3	45.1
	. 11	10	10	10	10	7
8	MEAN	236	243	227	241	238
	S.D.	33.4	21.9	27.1	30.0	18.8
	N	10	10	10	10	7
9	MEAN	229	241	191	229	221
	S.D.	36.1	25.2	47.7	29.0	49.1
	N	10	10	10	10	7
10	MEAN	227	216	216	231	230
	S.D.	39.6	31.0	31.0	30.5	38.2
	N	10	10	10	10	6
11	MEAN	229	231	220	231	209
	s.g.	37.5	20.0	31.2	30.5	40.9
	N	10	10	10	10	6
12	MEAN	226	226	213	221	204
	S.D.	40.6	18.1	29.4	36.9	24.7
	N	10	10	10	10	10
13	MEAN	214	220	200	204	201
	s.D.	39.8	21.4	24.9	51.6	19.5
	N	10	10	10	10	6

^{*} Indicates significance at the 0.05 level.

APPENDIX K

90-DAY WEIGHT GAINS/LOSS FOR MALE AND FEMALE RATS

90-DAY TCM STUDY #75-51-0743-88 WEIGHT GAINS - FEMALE RATS



90-DAY TCM STUDY #75-51-0743-88(2) SUMMARY OF BODY WEIGHT GAINS (GRAMS) FEMALE RATS

WEEK	GROUP	1 Water	2 Triton-X	3 30mg/kg	4 150mg/kg	5 300mg/kg
1	MEAN	23	21	23	23	20
	S.D.	6.5	5.2	5.0	4.6	8.2
	N	10	10	10	10	9
. 2	MEAN	22	22	19	22	23
	S.D.	4.6	7.5	5.3	7.0	5.1
	N	10	10	10	10	9
3	MEAN	20	20	20	18	13
	S.D.	5.6	5.0	8.4	5.1	10.8
	N	10	10	10	10	8
4	MEAN	15	13	11	13	19
	S.D.	4.4	4.7	5.7	5.0	7.4
	N	10	10	10	10	7
5	MEAN	10	11	11	11	14
	S.D.	2.9	3.6	4.0	3.7	5.1
	N	10	10	10	10	7
6	MEAN	12	12	13	12	7
	S.D.	6.8	5.8	4.0	6.6	10.1
	N	10	10	10	10	7
7	MEAN	9	9	8	6	-6*
	S.D.	3.1	5.5	7.5	11.9	14.6
	N	10	10	10	10	7
8	MEAN S.D. N	8 6.2 10	6 4.0 10	11 3.6 10	16.8 9	17.8 7
9	MEAN	5	6	3	6	7
	S.D.	7.4	5.3	5.6	8.7	9.4
	N	10	10	10	7	10
10	MEAN	9	8	6	7	7
	S.D.	3.8	5.2	5.4	3.2	4.5
	N	10	10	10	7	7
11	MEAN S.D. N	6 2.7 10	4.9 10	3 13.7 10	2 6.3 7	2 14.5 7
12	MEAN	2	3	5	4	-3
	S.D.	3.7	3.4	8.6	7.0	12.2
	N	10	10	10	7	7
13	MEAN	8	5	8	6	7
	S.D.	6.8	3.1	3.5	7.1	5.4
	N	8	10	10	7	6
OTAL GAIN	MEAN	150	140	141	143	127
	S.D.	18.9	24.2	30.1	29.1	14.5
	N	8	10	10	7	6

^{*} Indicates significance at the 0.05 level.

90-DAY TCM STUDY #75-51-0743-88 WEIGHT GAINS - MALE RATS

90-DAY TCM STUDY \$75-51-0743-88(2) SUMMARY OF BODY WEIGHT GAINS (GRAMS) MALE RATS

WEEK	GROUP	1 Water	2 Triton-X	3 30mg/kg	4 150mg/kg	5 300mg/kg
1	MEAN	44	46	48	44	43
	S.D.	8.5	8.7	5.6	6.8	9.5
	N	10	10	10	10	9
2	MEAN	48	52	48	51	47
	S.D.	9.5	10.0	10.3	8.5	6.7
	N	10	10	10	10	9
3	MEAN	43	46	41	39	46
	S.D.	9.4	9.0	13.5	15.0	10.6
	N	10	10	10	10	8
4	MEAN	35	39	34	37	31
	S.D.	8.3	8.7	9.2	6.3	14.4
	N	10	10	10	10	7
5	MEAN	31	31	31	34	32
	S.D.	6.3	6.2	5.2	7.4	9.2
	N	10	10	10	10	7
6	MEAN	24	25	21	25	12
	S.D.	7.3	6.5	4.6	12.7	22.1
	N	10	10	10	10	7
7	MEAN	23	23	22	25	19
	S.D.	5.6	5.1	8.7	7.8	28.5
	N	10	10	10	10	7
8	MEAN	16	16	8	10	17
	S.D.	8.0	5.4	11.9	9.8	8.7
	N	10	10	10	9	7
9	MEAN	17	18	7	17	8
	S.D.	5.4	4.3	21.2	11.1	24.4
	N	10	10	10	7	10
10	MEAN	18	16	20	17	19
	S.D.	3.7	4.5	13.3	5.7	7.2
	N	10	10	10	7	7
11	MEAN	10	10	14	9	-10*
	S.D.	5.3	4.3	8.5	10.9	14.5
	N	10	10	10	7	7
12	MEAN	11	9	13	7	6
	S.D.	4.7	4.1	5.8	8.8	10.6
	N	10	10	10	7	7
13	MEAN	14	15	8	8	7
	S.D.	7.6	6.1	10.0	20.4	23.2
	N	8	10	10	7	6
TAL GAIN	MEAN	332	346	315	332	284
	S.D.	61.7	54.0	56.6	52.9	47.2
	N	8	10	10	7	6

^{*} Indicates significance at the 0.05 level.

APPENDIX L

90-DAY CLINICAL CHEMISTRY VALUES FOR MALE AND FEMALE RATS

90-DAY TCM STUDY #75-51-0743-88(2) CLINICAL CHEMISTRY SUMMARY FEMALE RATS

TEST	GROUP	1 Water	2 Triton-X	3 30mg/kg	4 150mg/kg	5 300mg/kg
LK. PHOS.	MEAN	196.0	173.9	173.8 64.0	277.8 115.4	198.6 80.8
IU/L	S.D. N	56.7 10 .	57.2 10	10	115. 4 7	6
	••				·	_
SGOT	MEAN	68.1	89.8	90.8	87.8	84.6
IU/L	S.D.	8.9	25.9	24.3	21.5	19.4
	N	10	10	10	7	. 6
SGPT	MEAN	36.7	50.6	46.0	50.4	41.9
IU/L	S.D.	5.4	22.1	14.1	10.7	14.7
	K	10	10	10	7	6
GLUCOSE	MEAN	146.2	134.4	139.4	127.9	131.0
IU/L	S.D.	32.1	15.9	36.3	13.6	19.4
	N	10	10	10	7	6
TOT. BILI.	MEAN	1.1	1.1	1.0	0.9	0.9
MG/DL	S.D.	0.6	0.4	0.3	0.2	0.4
110/02	N	10	10	10	7	6
BUN	MEAN	21.4	22.3	24.1	21.4	21.2
MG/DL	MEAN S.D.	3.5	22.3	5.0	2.4	3.7
HG/ DL	J.D.	10	10	10	7	6
	••				·	_
TOT. PROT.	MEAN	8.8	8.8	8.7	8.4	8.2
G/DL	S.D.	0.6	.0.6	0.7	0.6	0.7
	N	10	10	10	7	. 6
CALCIUM	MEAN	12.0	11.5	11.5	10.9*	11.2*
MG/DL	S.D.	0.7	0.4	0.8	0.5	0.5
	N	10	10	10	7	6

^{*} Indicates significance at the 0.05 level.

ALK. PHOS. - Alkaline Phosphetase SGOT - Serum Glutamic Oxaloacetic Transaminase SGPT - Serum Glutamic Pyruvic Transaminase TOT. BILI. - Total Bilirubin

BUN - Blood Urea Nitrogen TOT. PROT. - Total Protein

90-DAY TCH STUDY #75-51-0743-88 (2) CLINICAL CHEMISTRY SUMMARY MALE RATS

TEST	GROUP	1 Water	2 Triton-X	3 30mg/kg	4 150mg/kg	5 300mg/kg
ALK. PHOS. IU/L	MEAN S.D. N	254.8 72.4 10	284.2 86.1 10	258.9 107.3 9	245.9 75.4 10	169.4 34.4 6
SGOT IU/L	MEAN S.D. N	94.2 18.2 10	86.1 19.7 10	90.7 16.9 9	89.7 33.3 10	77.6 13.1 6
SGPT IU/L	MEAN S.D. N	42.9 7.4 10	47.9 10.2 10	47.9 10.3 9	48.5 6.5 10	47.5 8.8 6
GLUCOSE IU/L	MEAN S.D. N	119.1 17.1 10	131.4 16.8 10	130.9 20.8 9	150.3* 38.2 10	117.4 5.5 6
TOT. BILI. MG/DL	MEAN S.D. N	0.8 0.4 7	0.7 0.1 6	0.8 0.2 4	0.6 0.1 5	0.6 0.2 4
BUN MG/DL	MEAN S.D. N	24.3 5.0 10	25.1 2.9 10	24.0 3.6 9	23.3 2.3 10	23.5 3.4 6
TOT. PROT. G/DL	MEAN S.D. N	8.6 0.5 10	8.6 0.5 10	8.5 0.6 9	8.1 0.5 10	7.7 ¹ 0.7 6
CALCIUM MG/DL	MEAN S.D. N	10.6 0.6 10	10.8 0.7 10	10.9 0.5 9	10.7 0.8 10	10.3 0.5 6

^{*} Indicates significance at the 0.05 level.

ALK. PHOS. - Alkaline Phosphatase

SGOT - Serum Glutamic Oxaloacetic Transaminase SGPT - Serum Glutamic Pyruvic Transaminase

TOT. BILI. - Total Bilirubin BUN - Blood Urea Nitrogen TOT. PROT. - Total Protein

APPENDIX M

HEMATOLOGY VALUES FOR MALE AND FEMALE RATS

ANALYSIS OF VARIANCE

90-DAY TCM STUDY NO. 75-51-0743-88(2) FEMALE RAIS - HEMOGLOBIN (g/dL)

		!	•				
	SUM OF	1140.63 1164.79 1164.79 11142.19 11181.54 1181.44 924.20 702.33 690.53	9998.53				
	GRAND		655.30	43.00	15.24		
	2	· ·	0.0	1.00	0.0	8	
	6		0.0	1.00	0.0	8	
	ω		0.0	1.00	0.0	8	
	,		0.0	1.8	0.0	ER	
	9	1 1 1 1 1 8 8 8 8 1 1 1	0.0	1.00	0.0	ER	
GROUPS	5 kg 300 m g/kg	2.5.4.4.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	89.80	9.00	14.97	0.62	
Œ	4 50mg/kg 3	15.7 15.3 14.2 16.1 15.3	107.00	7.00	15.29	0.61	
	3 4 30mg/kg 150mg/kg	73333343344 74086983344	153.10	10.00	15.31	0.59	
	1 2 itrol veh cont	233334433333 23534433333 20034433333	153.00	10.00	15.30	0.32	ĸ
DATA	control v	44488444444 6.7.6.4.4.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	152.40	10.00	15.24	0.59	of Group
# *	* * *	******		ş			*
	9 10	1 1 2 4 4 1 1	Totals	Observation	Hean	Std Dev	
	∞			J	_	0,	
	~	9 8 8 8					
	9	0 8 1 1 4					
GROUPS	KO.	478 479 484 484 490 519 525					
•	•	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<u>.</u>				
	m	475 476 476 477 486 491 500 502 516 517					
•	8	444 464 511 111 111 111 111 111 111 111 111 11					
MIM	-	504 495 504 495 504 509 522 522 524 526			ì	1-2	

	F-table Lookup (num. 4.denom. 38) F RATIO .05 = 2.62 F RATIO .01 = 3.86	COUNTY OF THE THE THE THE THE THE THE THE THE THE	CONCLUSIONS: AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .03 LEVEL. SAVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .01 LEVEL.
F Ratio	0.45		
K ean Square	4 0.14 0.45	0.30	1
Sum of Deg. of Mean Source Squares Freedom Square F Ratio		8	42
Sum of Squares	Between Groups 0.55	11.51	otals 12.06
Source S	Between Groups	Within Groups 11.51	Totals

ANALYSIS OF VARIANCE

90-DAY ICM STUDY NO. 75-51-0743-88(2) MALE RAIS - HEMOGLOBIN (s/dL)

	F8.	25111065188	4				
	SUM OF SQUARES	1033.12 1123.14 1093.51 1189.51 1188.16 1004.94 928.19 912.58	10000				
	GRAND		09.769	46.00	15.17		
	91		9.0	1.00	0.00	ER	
•	6	·	9.0	1.8	0.00	ER	
	∞		0.00	1.0	0.0	ER	
	7		0.00	1.00	9.0	ERR	
	9		0.00	1.8	9.0	8	
GROUPS	5 300mg/kg	884 884 84 84 84 84 84 84 84 84 84 84 84	86.50	6.00	14.45	0.87	
ਰ	4 50mg/kg	14.1 15.4 15.7 16.2 16.2 16.7 16.3	152.60	10.00	15.26	0.72	
	3 t 30mg/kg 1	4.8.8.4.4.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	152.30	10.00	15.23	0.59	
	1 2 trol veh cont	4.5.5.1 15.9 15.9 15.9 15.6 15.6 15.6	152.60	10.00	15.26	0.46	S
DATA.	1 control v	7.444444444444444444444444444444444444	153.60	10.00	15.36	0.50	of Group
₹*	* * *	* * * * * * * * * *		at ion			**
	co.		Totals	bservation	Hean	Std Dev	
	œ		-	•	x	S	
	~						
so.	9						
GROUPS	10	333 333 414 415 415					
	4	382 391 392 419 424 433 433					
	m	425 425 425 426 438 432 425 425 425 425 425 425 425 425 425 42					
* -	8	337 337 337 337 337 337 411 411 411 411 411 411 411 411 411 41					
ANIMAL		379 386 386 386 402 403 410 420 420			M-	3	

				IFFERENT AT .05 LEVEL.	IFFERENT AT .01 LEVEL.
	nom. 41) 2.60	3.82		NOT SIGNIFICANTLY DI	NOT SIGNIFICANTLY DI
	F-table Lookup (num. 4,denom. 41) F RATIO .05 = 2.60	F RATIO .01 =		CONCLUSIONS: AVERAGES ARE	: AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .01 LEVEL.
Datto	2.39				
Mean Southern	0.99 2.39		0.45	75555555	
Sum of Deg. of Mean Course Courses Freedom Courses F Datio	4		41 0.42		45
Sum of	Jetween Groups 3.96		Groups 17.02		Totals 20.98 45
Countre	Between Groups	Within	Groups		Totals

ANALYSIS OF VARIANCE

90-DAY TCM STUDY NO. 75-51-0743-88(2) FEMALE RAIS - HEMATOCRIT (X)

	GRAND SUN OF TOTALS SQUARES	8572.21 8941.72 8837.74 9286.39 8907.74 9795.07 7553.63 6006.34 6064.24 6366.13	1856.10 80330.51	43.00	1.17		
	25			1.00 43		ERR	
	10						
	6		0.0	1.00	9.0	ER	
	∞	0 1 3 2 1 0 0 0 0	9.0	1.00	0.0	ER	
	,		0.0	1.00	0.0	ER	
	9		9.0	1.00	0.0	ER	
GROUPS	5 g 300mg/kg	4.1.1.2.3.0.3.0.3.0.3.0.3.0.3.0.3.0.3.0.3.0.3	252.60	6.00	42.10	2.65	
3	4 50mg/kg 30	24.1.3.8.2.3.3.3.5.4.4.3.5.4.4.4.5.3.3.3.3.3.3.3.3	299.20	7.00	42.74	2.15	
	3 30mg/kg 150mg/kg	0.14 4 24 24 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	428.10	10.00	42.81	1.75	
		42.00 42.00 42.00 44.7 45.33 4.7	430.70	10.00	43.07	1.23	
*DATA	1 control v	41.0 44.3 45.3 45.3 45.6 45.0	445.50	10.00	44.55	1.70	
₽.	2						
	6		Totals	Observation	Hean	Std Dev	
	&	9 1 1 1 2	<u> </u>	용	운	z	
	7						
	9	i f					
GROUPS	S.	478 479 5519 525					
9	•	20 20 20 20 20 20 20 20 20 20 20 20 20 2					
	m	475 476 476 477 491 491 500 500 516 517					
*	~	474 482 482 494 494 494 494 511 511 511					
MIM	-	487 495 503 504 504 504 522 524 526 526		N	1-4		

Source Squares Freedom Square F Ratio Between Groups 28.59 4 7.15 1.48 F RATIO .01 - 3.86 Within Groups 183.15 38 4.82 CONCLUSIONS: AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .05 LEVEL. Totals 211.74 42 : AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .01 LEVEL.			<u>.</u>	I AI .05 LEVEL. F AT .01 LEVEL.
Deg. of Mean Freedom Square F Ratio 4 7.15 1.48 38 4.82		nom. 38) 2.62 3.86		NOT SIGNIFICANTLY DIFFERENT
85		F-table Lookup (num. 4,de F RATIO .05 F RATIO .01		CUNCLUSIONS: AVERAGES ARI
85	F Ratio	1.48		t 3 1 1
85	Mean Square	7.15	4.82	
	Deg. of Freedom	4	88	42
S S ES S		28.59	183.15	211.74
Sour Group Group Group	Source	Between Groups	Within Groups	Totals

ANALYSIS OF VARIANCE

90-DAY TCM STUDY NO. 75-51-0743-88(2) MALE RATS - HEMATOCRIT (X)

	ዶ ዩ፤ !	E .	1 5	200	/ 4	39,	8	22		2				
	SUM OF	9331.	960	11251.	113/5	9305	8715.	8486.70		97647.10				
	GRAND		•							2117.20	46.00	46.03		
	22									8.	1.00	0.00	ER	
	O n							-		0.0	1.00	0.00	ERR	
	&	i i i i i i								00.0	1.00	0.00	ER	
	7	! ! !								0.00	1.00	0.00	8	
	9									0.0	1.00	0.00	ERR	
GROUPS	5 00mg/kg	41.7	£0.3	43.4 48.1	44.5	47.9				265.90	9.00	44.32	2.92	
J	3 30mg/kg 150mg/kg 300mg/kg	42.1	46.0	43.6 48.0	47.0	~; €	47.3	44 46 8	2.c	459.80	10.00	45.98	2.26	
	3 30mg/kg 1	42.9	46.8	46.0 45.3	44.1	47.8	47.5	45.3	47.6	460.50	10.00		1.63	
	l trol veh cont	45.4	43.4	45.9	45.6	48.3	48.9	8.4 8.7.	42.4	463.10	10.00	46.31	1.47	ĸ
POATA	1 control v	43.8	47.5	44.2	46.5	45.6	49.2	47.7 45.4	49.0	467.90	10.00	46.79	1.81	of Group
₽.	92	*	#	* *	*	*	#	# #	#		Observation		2	*
	o									Fotals)bserv	Kean	Std Dev	
	∞	į										_		
	1													
s	9	į												
GROUPS	3	205	88	66	3	415								
	•	5	888	8	38	419	421	423	433					
*	m	202	3	\$	₹ ₹	425	427	\$2 82 82 82	432					
•	7	100	38	388	3	1 8	411	416	42					
AKIM			£ %	88	402	3	40	\$ \$	422	1		ì	1- 5	

	F-table Lookup (num. 4. denom. 41.) F RATIO .05 = 2.60 F RATIO .01 = 3.82	CONCLUSIONS: AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .05 LEVEL.	: AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AL .UI LEVEL.
F Ratio	6.05 1.41	1. 1. 1. 1. 1. 1. 1.	
Mean Square	6.05	41 4.30	
Deg. of Mean Freedom Square F Ratio	4		45
Sum of equares	24.20	176.47	200.67
Source Squares	Between Groups	Within Groups	Totals

ANALYSIS OF VARIANCE

90-DAY TCM STUDY NO. 75-51-0743-88(2) FEMALE RATS - RED BLOOD CELLS (10E+6/µL)

	SUM OF SQUARES	287.67 298.14 299.95 304.94 288.67 326.11 205.22 202.22	2651.88				
	GRAND		!	43.00	7.84		
	22		9.0	1.00	9.0	ER	
	5	,	0.0	1.00	0.00	8	
, ,	&		9.0	1.8	0.00	ER	
	7		0.0	1.00	9.0	88	
	9		0.0	1.00	0.0		
GROUPS	5 Omg/kg	, , , , , , , , , , , , , , , , , , ,	46.60	6.00	7.77	0.56	
5	3 30mg/kg 150mg/kg 300mg/kg	6.5 6.5 6.5 7.6 6.9	53.90	7.00	7.70	0.45	
	3 30 ag/k g 1	8.1 7.1 8.1 7.7 7.7 7.7	77.70	10.00	1.11	0.31	
	1 trol veh cont	88.7.7.7.7.7.88 8.6.6.6.6.88 6.6.6.6.88	78.60	10.00	7.86	0.30	ĸ
PDATA	ontrol v	2.7.5 2.7.5 3.7.7.5 3.7.7.5 3.8.3 3.8 3.8	80.40	10.00	8.04	0.33	of Group
₽,	 			tion		_	***
	6		Totals	Observation	Mean	Std Dev	
	©		Ĕ	5	Ī	Š	
	7						
	9						
GROUPS	40	478 479 484 490 519 525					
ŭ	•	8					
	m	475 477 477 477 477 500 500 500 517 517					
•	8	474 482 482 493 494 494 501 512 512 513					
MIM		487 495 503 504 509 522 524 524 526			M	- 6	

		F-table Lookup (num. 4,denom. 38) F RATIO .05 = 2.62 F RATIO .01 = 3.86		CALL TO TA TATACTURE OF THE STATE OF THE STA	CONCLUSIONS: AVERAGES ARE NOT STRAITTICANTLY DIFFERENT AT JUST LEVEL.	: AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .OI LEVEL.
	F Ratio	0.85				
Wean	Square	4 0.16 0.85	;	38 0.18		
Deg. of	Freedom	 4	;	8		45
Sum of	quares	0.62	;	6.98		7.60
	Source Squares Freedom Square F Ratio	Between Groups 0.62	Within	Groups		Totals 7.60

ANALYSIS OF VARIANCE

90-DAY TCM STUDY NO. 75-51-0743-88(2) MALE RATS - RED BLOOD CELLS (10E+6/ μ L)

	8 9 10 GRAND SUM OF TOTALS SQUARES	0 EFE	366.91 350.42 381.40 35.15 407.91 319.15 294.19	0.00 0.00 398.40	0.00 0.00 0.00 398.40	0.00 0.00 0.00 398.40 1.00 1.00 1.00 46.00 0.00 0.00 8.66
7 8	******************		0.00	1.00	0.00	ERR ERR
	9	/ 4 0884		0 1.00		12 ERR
	5 kg 300mg/kg		60 48.50		56 8.08	
	3 4 5 30mg/kg 150mg/kg 300mg/kg	8.7 7.9 9.11 9.11 7.6 9.13 9.13 9.13 8.24 8.25 8.25 8.25 8.25 8.25	87.90 85.60	, -	8.79 8.56	0.53 0.
		1	87.80 87			
	1 2 control weh cont	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i		8.86	0.42
	: * * 2 6		Totals	Observation	Mean	Std Dev
	ω		101	용	옾	s
	7					
	9					
	ĸ	285 285 285 414 154 154 154				
	*	382 392 392 424 424 424 424 424 424 424 424 424 4				
	m	1864513578888 1864513578888				
!	2	387 395 395 395 401 408 418 418				
	-	338 338 338 402 403 403 403 403 403 403 403 403 403 403	į		M-	7

A dominated to the state of the	F-table Loxup (1100): 4, verion: 41/ F RATIO .05 = 3.82 F RATIO .01 = 3.82	CONCLUSIONS: AVERAGES ARE SIGNIFICANTLY DIFFERENT AT .05 LEVEL	: AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .01 LEVEL.
F Ratio	4 0.70 3.00	1 1 1 1	
Mean Square	0.70	41 0.23	
Source Squares Freedom Square F Ratio	4	Ī	otals 12.41 45
Sum of urce Squares	2.81	Within Groups 9.60	Totals 12.41 45
Source S	Between Groups 2.81	Within Groups	Totals

ANALYSIS OF VARIANCE

90-DAY ICM STUDY NO. 75-51-0743-88(2) FEMALE RATS - MEAN CELL VOLUME (fl)

		!					
	SUM OF SQUARES	14919.00 15131.00 14691.00 15240.00 15458.00 15135.00 12326.00 9077.00 9623.00	2370.00 130686.00				
	GRAND		2370.00	43.00	55.12		
	01		0.0	1.00	0.00	ERR	
	5 1		0.0	1.00	0.0	8	
	∞	:	0.00	1.00	0.00	ER	
	_		9.0	1.00	0.00	E	
	. 9		0.0	1.00	0.0	8	
GROUPS	5 300mg/kg	2824288 2824488	324.00	00.9	54.00	1.29	
g	4 150mg/kg	228888	390.00				
	3 30mg/kg 150mg/kg	<i>ឯ</i> ឧសភិសភិសភិស	551.00	10.00	55.10	0.30	
	2 rol veh cont	<u>ቋ</u> የዓመሪያ የአመሪያ የ	550.00	10.00	55.00	1.15	S
PATA	1 control v	ន្ត នេះ នេះ នេះ នេះ នេះ នេះ នេះ នេះ នេះ នេះ	555.00	10.00	55.50	0.94	4 of Group
₽.	* * *	****		ᅙ			*
	9 10		Totals	Deservation	s	Std Dev	
	ω		ē	Š	Hean	St	
	_	1 f 1 1 1					
	9						
GROUPS	S.	478 479 519 525					
9	•	481 483 507					
	m	475 477 477 491 502 502 516 517					
•	~	474 482 482 483 483 511 512 513					
MIM		504 503 504 504 522 524 524 524			M-1	В	

							LEVEL.	LEVEL.
							.05	<u>e</u> .
							T AT	T AT
							DIFFEREN	: AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .01 LEVEL.
							CANTLY	CANTILY
		8	2.62	ج 8			SIGNIFI	SIGNIFI
		E		•			PON	달
		4, der					ARE	ARE
		F-table Lookup (num. 4,denom. 38)					FERAGES	FRAGES
		okup	5	=			S: A	₹
		ie C	9. 2.	٠. 9			USION	
		F-tab	F	FR			2000	
	Source Squares Freedom Square F Ratio		2.25			٠		
lean	quare		5.			38 1.28		
-	5		4			ജ	į	42
5	Freed							
SEE of	quares		11.59			48.83		60.42
	Source S	Between	Groups		Within	Groups		Totals 60.42 4

ANALYSIS OF VARIANCE

90-DAY TCM STUDY NO. 75-51-0743-88(2) MALE RATS - MEAN CELL VOLUME (fl)

			! ~				
	SUM OF	13647.00 13847.00 14267.00 15355.00 14709.00 13968.00 11678.00 11454.00	2452.00 130914.00				
	GRAND		2452.00	46.00	53.30		
	91		0.00	1.00	0.0	8	
	o		0.00	1.00	0.00	æ	
	∞		0.00	1.00	0.00	ER	
	~		0.00	1.00	0.00	ER	
	9		0.00	1.8	0.0	ER	
GROUPS	5 100mg/kg	22 22 25 25 25 25 25 25 25 25 25 25 25 2	329.00	6.00	54.83	1.71	
9	3 4 5 30mg/kg 150mg/kg 300mg/kg	នានានាសាសស្ន	540.00	10.00	54.00	1.60	
	30mg/kg 1	848888888888	523.00	10.00	52.30	2.61	
	2 rol veh cont	222222222222222222222222222222222222222	531.00			1.63	ĸ
PATA	1 control v	2002404040	529.00	10.00	52.90	2.06	of Group
₩.+	* * *	*******		t on			***
	9 10		Totals	Observation	Hean	Std Dev	
	∞	8 8 8					
	7) 					
	9	: : : :					
GROUPS	vo	383 385 339 409 415	! !				
IJ	4	382 391 392 392 442 424 434 434					
	m	381 400 413 425 427 428 429 429 429					
•	2	387 389 3395 3397 3397 401 411 416 416 416 416					
ANIMA	-	379 379 386 386 386 402 402 403 403 403 403 403 403 403 403 403 403	i ! !		M-	9	

	F-table Lookup (num. 4, denom. 41) F RATIO .05 = 2.60	7.62 - 3.62	CONCLUSIONS: AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .05 LEVEL. : AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .01 LEVEL.
F Ratio	1.76		
Mean Square	4 7.75 1.76	41 4.41	#
Sum of Deg. of Mean Source Squares Freedom Square F Ratio	4	41	
Sum of Squares	Setween broups 31.01	dithin Groups 180.73	ctals 211.74 45
Source	Between Groups	Within Groups	Tetals

ANALYSIS OF VARIANCE

90-DAY TCM STUDY NO. 75-51-0743-88(2) FEMALE RATS - WHITE BLOOD CELLS (10E+3/LL)

	SUM OF	271.96	295.42	456.63	665.40	238.70	468.26	343.61	3673.15				
	GRAND TOTALS S	V C C C C C C C C C C C C C C C C C C C							!	43.00	8.74		
	91	1 1 0 8 1 1							0.0	1.00	0.00	ER	
	6	i 6 1 1 1							0.0	1.00	9.0	ER	
	∞	6 1 6 1 1 1							0.0	1.00	0.0	器	
	7								0.0	1.00	9.0	ER	
	9								0.0	1.00	0.00	83	
GROUPS	5 3 300mg/kg	4.9	6.0	7.5	18.5				53.50	9.00	8.92	5.07	
ž	4 50mg/kg	7.	9	. 8 . 8	8.4	5.9			60.90		8.70	1.66	
	3 1 30mg/kg 1	6.7	6.5	10.0	7.5	7.8	10.9	8.5	83.40	10.00	8.34	1.64	
	2 rol veh cont	4.6	9.0	10.3	9.5	8.8		12.1	80.00	10.00	8.00	2.84	ις
*DATA	ontrol v	8.0	8	10.3	10.3	8.1	17.6	11.4	97.90	10.00	9.79	1.57	# of Group
₩.	* * * 9	* *	* 1	* *	*	*	* *	* *		tion		_	**
	9								Totals	Observation	Mean	Std Dev	
	æ								₽	8	¥	×	
	~												
	9								!				
GROUPS	S	478	\$ 5	519	225				! ! !				
	•	84	8	\$ \$	\$	207			<u>.</u>				
	က	475	477	§ 5	န္တ	205	516	27/	į				
+	~	428	8	494	\$	50	511	215 513					
ANIMAL	-	487 495	8	, S	210	525	524	270			M	-10)

		ī	교급
		:	Z Z
			CONCLUSIONS: AVERAGES AKE NOI SIGNIFICANILY DIFFERENT AT .US LEVEL. : AVERAGES ARE NOT SIGNIFICANTLY DIFFERENT AT .01 LEVEL.
			ANTLY
	3.86 3.86		IGNIFIC
	F-table Lookup (num. 4, denom. 38) F RATIO .05 = 2.62 F RATIO .01 = 3.86	9	55 50 80
	4 , de	•	38
	(DEM)	Š	
	ookup 05 -	ء و	
	ATIO .		רופות
	7 T T		
ا ه			;
F Rati	0.4		
Nean Square	4.57 0.47	38 9.80	# # #
Deg. of Mean Freedom Square F Ratio	4		42
quares	18.30	372.28	390.58
Source S	Between Groups 18.30	Within Groups 372.28	Totals

ANALYSIS OF VARIANCE

90-DAY ICM STUDY NO. 75-51-0743-88(2) MALE RAIS - WHITE BLOOD CELLS (10E+3/µL)

	SUM OF SQUARES	795.70 931.67 944.61 1382.07 938.84 926.38 1446.22 588.33 653.67	9262.47				
		2.99 2.994 2.99	!				
	GRAND		627.10	46.00	13.63		
	10		0.0	1.00	0.00	ERR	
	6		0.00	1.00	0.00	ERR	
	∞		0.00	1.00	0.00	ER	
	7		9.0	1.00	0.00	ER	
	6		0.00	1.00	0.00	ER	
GROUPS	5 g 300mg/kg	7.0 9.7 19.0 14.5 16.2	75.40	9.00	12.57	4.29	
8	3 30mg/kg 150mg/kg 30	11.3 12.8 12.8 12.6 11.0 11.0	148.10	10.00	14.81	2.90	
	3 30mg/kg 1!	10.9 11.3 12.9 7.5 9.2 8.0 14.3	123.20		12.32	5.06	
	l 2 trol veh cont	19.8 14.4 12.3 18.9 10.0 11.3 11.3 11.3 11.3	149.70	10.00	14.97	4.55	S
DATA	1 control v	10.4 10.9 10.9 12.3 12.3 13.8 13.8 12.3	130.70	10.00	13.07	2.21	of Group
₽.	* * * * 9	* * * * * * * * * *		tion			*
	9	\$ 8 9 8	Totals	bservation	Hean	Std Dev	
	&	2 1 1 1	2	용	₹	Ş	
	7	8 8 8 8					
	9						
GROUPS		3333 339 414 415 415					
æ	4	382 391 392 392 442 424 433					
	m	22.22.22.23.32.23.32.32.32.32.32.32.32.3					
•	8	387 389 389 395 397 411 418 418 418					
ANTHAL	-	379 386 396 403 403 404 406 406 406 406 406 406 406 406 406	t ! ! !	M	- 11	•	

	F-table Lookup (num. 4.denom. 41) F RATIO .05 = 2.60 F RATIO .01 = 3.82	CONCLUSIONS. AVEDACES ADE UNI SIGNIFICANTI V DISEEDENT AT OR 1 EVE	SAVERAGES ARE NOT SIGNIFICANTY DIFFERENT AT .01 LEVEL.
F Ratio	0.92		
Mean Square	14.74 0.92	41 15.96	
Deg. of Mean Freedom Square F Ratio	4		45
Sum of Source Squares	Between Groups 58.96	Within Groups 654.50	713.46
Source	Between Groups	Within Groups	Totals

APPENDIX N

90-DAY SUMMARY OF ORGAN WEIGHTS FOR MALE AND FEMALE RATS

90-DAY TCM STUDY #75-51-0743-88(2) SUMMARY OF ORGAN WEIGHTS (GRAMS) FEMALE RATS

ORGAN	GROUP	1 Water	2 Triton-X	3 30mg/kg	4 150mg/kg	5 300mg/kg
Body	MEAN	311	301	300 35.0 10	303	286
Weight	S.D.	311 26.1 10	25.7	35.0	28.0	21.5
	N	10	10	10	7	5
Brain	MEAN	1.91	1.88	1.81	1.96 0.055	1.90 0.043
	S.D.	0.087	0.070	0.354	0.055	
3	BODY WT	0.62	0.63	0.60	0.65	0.67 0.054
	N.	10	1.88 0.070 0.63 0.060	10	7	5
dronale	MFAN	0 080	0 078	n n79	n n84	n nas
u, via 13	S.D.	0.015	0.018	0.018	0.009	0.027
9	BODY WT	0.026	0.026	0.026	0.028	0.029
	S.D.	0.005	0.006	0.005	0.002	0.008
,	S D	4.208 0.845	4.145 0.877	4.090 2 167	4.200 0.530	4.4/9 1 545
	N N	10	0.078 0.018 0.026 0.006 4.145 0.877	10	7	5
Kidnevs	MEAN	2.15	2.22	2.23	2.26	2.19
•	S.D.	0.183	0.274	0.388	0.120	0.212
\$	BODY WT	0.69	0.74	0.74	0.75	0.77
	S.U.	0.055 112 09	0.099 117 93	130.02	0.052 115.07	116 24
_	S.D.	7.543	11.965	45.717	8.095	9.237
	N	10	2.22 0.274 0.74 0.099 117.83 11.965	10	7	5
Ovaries	MEAN	0.14	0.14	0.12	0.15	0.28
4	S.D.	0.019	0.038	0.027	0.014	0.339
•	S.D.	0.04	0.14 0.038 0.05 0.010 7.28 1.911	0.04	0.006	0.10
:	BRAIN WT	7.08	7.28	7.46	7.43	14.87
	S.D.	1.138	1.911	4.200	0.738	17.623
					0.15 0.014 0.05 0.006 7.43 0.738 7	
Liver	MEAN	10.45	10.60 1.131 3.53 0.295	10.87	11.20	11.18
	5.0. • BOOV UT	1.452 3.35 0.301	1.131	1.925	1.437	0.612 3.92 *
•	וא זעטם כי S.D.	3.35 0.301	3.53 0.295	0.376	3.09 0.245	3.92 * 0.300
:	* BRAIN WT	546.57	0.295 565.14	629.45	1.437 3.69 0.245 571.89 82.977	589.24
	2.0.	/3.138	61.919 10	198.179	82.977	46.163
	N	10	10	10	7	5
Sp1een	MEAN	0.55	0.53	0.54	0.60	0.53
	S.D.	0.093	0.078	0.066	0.068	0.051
•	* BODY WT S.D.	0.18 0.031	0.18 0.035	0.18 0.019	0.20 0.020	0.19 0.029
	BRAIN WT	28.84	28.03	31.36	30.47	28.09
	S.D.	4.662	4.146	9.473	3.875	2.452
	N	10	10	10	7	5

^{*} Indicates significance at the 0.05 level.

90-DAY TCM STUDY #75-51-0743-88 (2) SUMMARY OF ORGAN WEIGHTS (GRAMS) MALE RATS

ORGAN	GROUP	1 Water	2 Triton-X	3 30mg/kg	4 150mg/kg	5 300mg/kg
Body	MEAN	529	534	507	514 53.7 10	477
Weight	MEAN S.D.	69.4	65.8	62.9	53.7	46.6
	N	529 69.4 10	10	10	10	10
Brain	MEAN	2.00	1.97 0.078 0.37 0.037 9	1.96	1.97	2.00
	S.D.	0.061	0.078	0.055	0.065	0.074
	* BODY WT	0.38	0.37	0.39	0.39	0.42
	S.D.	0.055	0.037	0.044	0.034	0.044
		10	y 	10	10	0
drenals	MEAN	0.065	0,061	0.062	0.069	0.069
	S.D.	0.011	0.021	0.009	0.010	0.022
	* BODY WT	0.01	0.01	0.01	0.01	0.01
	S.D.	0.002	0.003	0.003	0.003	0.004
	# RKAIN AL	3.25	3.07	3.15	3.52	3.44 1.115
	N	10	0.061 0.021 0.01 0.003 3.07 0.979	10	10	6
Kidnevs	MFAN	3.49	3.65	3.46	3.55	3.34
i ee.	S.D.	0.406	0.563	0.368	0.274	0.432
	* BODY WT	0.67	0.68	0.69	0.70	0.70
	S.D.	0.081	0.064	0.070	0.079	0.29
	* BRAIN WT	175.09	184.77	176.56	180.39	166.77
	И 2.D.	10	3.65 0.563 0.68 0.064 184.77 25.208	18.506 10	10.106	6
Testes	MEAN	3.53	3.40 0.139 0.64 0.066 172.54 3.811	3.46	3.45	3.33
	S.D.	0.30	0.139	0.305	0.237	0.180
	* BODY WT	0.67	0.64	0.69	0.68	.70
	S.D.	0.069	0.066	0.102	0.073	0.088
	* BRAIN WT	176.86	172.54	176.31	175.46	166.11
	S.D.	15.831	3.811	15.000	11.827	9.212
	R	10	y	10	10	6
Liver	MEAN	20.42	21.09	18.09	20.24	17.81
	S.D.	4.410	5.438	3.241	3.592	2.849
	* BODY WT	3.83	3.90	3.55	3.92	3.72
	S.D.	0.386	0.620	0.256	0.500	0.395
	* BRAIN WT	1027.49	1063.92	923.26	1027.42	888.80 145.690
	¥.	251.134 10	21.09 5.438 3.90 0.620 1063.92 244.672 9	105.451 10	186.092 10	145.690 6
Spleen	MEAN	0.79	0.86	0.86	0.81	0.70
-p 10011	S.D.	0.168	0.190	0.109	0.129	0.142
	* BODY WT	0.15	0.16	0.17	0.16	0.15
	S.D.	0.028	0.019	0.019	0.030	0.029
	* BRAIN WT	39.47	43.17	43.68	41.51	34.92
	S.D.	8.702	8.194	5.086	7.175	6.958
	N	10	9	10	10	5

^{*} Indicates significance at the 0.05 level.